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1.1 Introduction and review

Locally modelled on C". For the specific case when n = 1: Complex curves, Riemann
surfaces. One endowed with structures locally modelled on C. Holomorphic functions on

C and on C".

Definition 1.1. A holomorphic function f : U C C — C is a differentiable map
from U C R™ — R™ such that the differential commutes with multiplication by i (Complex

linearity).
e . : e B 1 9 0
Multiplication by ¢ in coordinate x,y is Lo ) s = 0 and By = L) then
i 0 =9
(? 9y . Then if df commutes with i, we have
Z(’Ty = ™
idf(2) =df(i2) = df (2 9L =8,
F) = df (i) f(ay) = gx aya (Cauchy-Riemann Equations).
idf () = df (i) = —df () ig =4
a —b
— df = = Mytp;.
b a

On V C C, dx,dy are 1-forms.
dz =dx +idy, dz =dx —idy,

are 1-forms with values in C. For f: V — C, df = %dm + g—idy is a 1-form with value in
C. df = % dz+ 9Ldz. Then we say f is holomorphic, iff df is C-linear, iff 2 = 0. Indeed,
with notations
9 _ 0 0z 0 0Oy _
0z = Oxr 0z oy 0z —

oz 0
9 0z 0z "oy 0z

Theorem 1.1. f is holomorphic iff f is analytic, meaning that for any u € U, there is a

power series Y, apw™ of radius p such that for any 0 < r < p such that D(u,r) C U, and
n>0

. () (4
for any z € D(0,7), flu+z) = > apz" with a, = ! !( ).

n
n>0

Proof. We only need to prove the only if part, and this is a consequence of Cauchy

formula

1
$e0) = gy | gmde

The holomorphic w := gf—(i) d¢ on U \ {20} is closed,

w4 D :31@)> 6(1@)) _
dw = 0w + Ow 8£<£—zo (1l£/\al£+ag E— 2 dé NdE =0,



since d¢ A d§ = 0.
By Stocks formula

/f(g) d¢ = T e - / flzo+e- e?™)dt =% f(z).
¥ f — 20 20+e-ei2mt € — 20
Now we use Cauchy formula to prove (roughly) that if f is holomorphic, we have f is
analytic.
1 f(&)
——d
Jlutz)= 2772/ —u) z ¢
~ omi { 5
"d
T omi / & — u ) ¢
(5)
= e dg) 2"
Z (gm /7 u)n JE
S _ f(")
Note that the coefficient 2m f7 = u()n+1 d¢ = ( ), O
For several variables C* = R?", (z1,---,2,) — (21,%1," - , n, Yn), the multiplication
by i defines an operator j € End(R?") with j2 = —id. Hence we have i% = sz

Definition 1.2. f: U C C* — C is a holomorphic function if f is differentiable and df
commutes with multiplication by 1.
. . . . F)
a];hzs 1s equivalent to, for any 1 < k < n, zdf(a%k) = df(z%) = f(—), zﬁzam ﬁ,
Theorem 1.2. A function f : U C C® — C is holomorphic iff f is analytic, meaning that
for any uw € U, there is a polydisk

{|2’1 —U1| < R1,~-|zn—un\ <Rn} C U,

and a power series > a;z" -+ 2" such that for any z with |z;| < R;, we have
i=(i1,+in )i >0

flu+z)= Zaz 2 and Y |ag|rit - rin < 400 fo any iy < Ry.
i

Proof. This is a consequence of Cauchy formula

_ dgl L dgn
flu) = /|£ L Teg g

O

Corollary 1.1. If U C C" is connected and f : U — C is holomorphic and vanishes on a
non-trivial open set V. .C U, then f =0 on U.



Proof. Define
O :={z € U : 3V(z) a neighborhood of z such that fy(,) = 0}.

O is not empty since V C O. Consider the set

o'f . L
F={ze¢U:—=0,YI]= (i1, ,in), ik > 0}.
82[
Since F' = O hence O is a non-empty closed and open set in U, hence O = U. O

Corollary 1.2 (The maximal principle). Let f : U C C" — C be a holomorphic
map defined on the connected set U. Assume there is u € U and an open mneighborhood
u €V CU such that |f(u)| > |f(2)] for any z € V', then f = f(u) on U.

Proof. Deduced from Cauchy formula

_ dfl L dfn
f(u) = /|£ L Tega g

with g5 > 0 small enough such that {(z1,---,2,) : |2k — ug| < er} C V.

1 1
f(u)_/ / f(U1+€1-62mt1,"' 7Un+€n-€2mt")dt1---dtn.
0 0

Then

1 1
[f ()] S/O /0 [fur +e1- €™y 4 - €Ty dy < | f(w)].

Thus we have equalities in both inequalities.

First equality says f(u1+¢1-e*™ ... un+e,) have the same argument. The second
equality says that |f(u1 + e - €21 ... un +¢e,| = |f(u)| for any e1,--- ,e,. Hence f is
constant = f(u) on the polydisk . Then by Corollary 1.1, f = f(u) on U. O

Definition 1.3. f: V C C" — C™ is holomorphic if f = (f1,---, fm) with fx holomor-
phic, V1 < k < m.

If m = n, f is called a local biholomorphism if for any u € U, there is V(u) C U
a neighborhood of u such that fly () : V(u) — f(V(u)) is a holomorphic bijection with
inverse which is holomorphic.

A biholomorphism is a bijection which is a local biholomorphism at any point.

Theorem 1.3 (Constant Rank Theorem). Let f : U C C* — C™ be a holomorphic
map and assume Ju € U such that on a neighborhood V (u) of u, the rank of the differential
((gg)ii:) is constant equal to k.

Then there exists a local biholomorphism between an open neighborhood of w in V(u),
called W (u) and the polydisk D™ = {|z;| < 1,V1 < i < n}, ¢ : W(u) — D" sends u to
0, and a local biholomorphism between f(W(u)) and D™, ¢ sends f(u) to 0, such that
Yofop l:D" = D™ is (21, - ,2p) = (21, -+, 2k,0,---,0).

Remark 1.1. Particular case for m = n = k, local inverse theorem says that df has rank

k=m=mn at a point u iff f is a local biholomorphism in the neighborhood of w.



1.2 Typical examples with their automorphism group

Definition 1.4. A complex manifold M is a topological Hausdorff space which admits a
cover by open sets (U;)ien such that there exists ¢; : Up — ¢;(U;) € C™ a collection of

homeomorphism for any U; and an open set p;(U;) C C™, such that the transition map
wiopit iU NU;) — ¢ (U; N U)

is biholomorphic.

The pair (U;, ;) is called a local coordinate on M. The collection of (Us, pi)icr 1
called an atlas. Two atlases are equivalent if their union is still an atlas. An equivalent
class of atlases is the structure of a complex manifold. n is called the complex dimension

of the manifold.

Example 1.1. For n = 1 they are of complex dimension one (with this point of view
they are complex curves). But they are real surface (real dimension 2) and they are called

Riemannian surfaces.

Example 1.2. Open sets in C are complex manifolds. D = {z € C: |z| < 1} is a complex
manifold which is not biholomorphic to C (Liouville theorem). There are nice bijection

between D and H = {z € C: Imz > 0}. F(z):%:H%D andG(w):iﬁ:D—)H.

Example 1.3. Riemann surface. x>+ y*> + 22 =1 is a Real manifold of dimension 2.
1

on SE\{N} = C=R? g:S*\{S} 2 C=R* pyopg':C* = C* 2z .

Z

is not holomorphic. But by setting pg : S\ {S} — C = R2, we have the transition map
z 1

This is the same complex structure as P*(C), the complex projective line:
PY(C) = {linear vector spaces of dimension 1 in C?}.

(21, 22) ~ (A\z1,A22) if A € C*, hence P! = C2\ {0}/C*. An equivalence class is [z1 : 2]
On the open set z1 # 0, [z1, 22] — j—f On the open set zo # 0, [21, 22] — % Then the

transition map is z — % from C* to C*.

Exercise 1.1. Aut(P!): bijections which are holomorphic and with holomorphic inverse,

are exactly those given by linear transformation of C2.

Proof. Claim: any meromorphic function on P! is rational, i.e. of the form g with P,Q €
C[X]. In fact let ay,- -+, be poles of f in C. Then there exists ki, -+, ky, € N such
that (z — a1)® - (2 — ay)* f is holomorphic on C with a possible pole at oo, so it’s a

polynomial P, then f is rational.

az+b
cz+d* o

If f is an automorphism, it has a unique pole and unique zero, so f =



Example 1.4. Take C" and (eq,--- ,e2,) a basis of the real vector space R*™. Then
C"/Ze1 @ -+ ® Zeay, is a real manifold diffeomorphic to (S')?™ and it is also a complex
manifold. A particular case of interest isn = 1, C/Zey ® Zey is a complex structure on
St x S'. What are local coordinates here?

Assume xg € C and r > 0 such that B(zg,r) small enough such that all v - B(x, )

are distinct when v € Zey @ Zey are transitions.

Exercise 1.2. Let X = C/Zey @ Zes, with (e1,e2) a real basis of R?. Then X is bi-
holomorphic to C/Z & Zt, where T € H. Moreover, 7,7 € H define the same complex
structure iff 3g € PSL(2,Z) such that g7 = 7' i.e. Ja,b,c,d € Z with ad — bc = +1 such

at+b __ _/
that o d=T-

Proof. We admit the result Aut(C) = {az+5:a € C, e C}. If f: C/Z+Zr —

C/Z + Z7' is a biholomorphism, it induces a biholomorphism f : C — C, hence there is

a € C* and B € C, such that f(z) = az + 8. Moreover, we have f(()) =0, hence 8 = 0.
We have «(Z + Z7) = Z + Z7', then there is a, b, ¢,d € Z such that

ca+dar =1 1 ,  a+br
= o= =T = .
c+dr c+dr

aa + bat =1/

Since the map is invertible, by solving

1 1 d
A . <a+bT> - <Ctd7) - A . <C ) - id,
ctrdr crdr a b

d
we say (C b> € GL(2,Z), i.e. ad — bc = £1. O
a

Definition 1.5. Let X be a complex manifold and f : X — C a continuous map. Then f is
holomorphic iff for any local chart (U, i) of X, fop;  : i(Ui) — C is holomorphic. This
notion is independent of the chart because on U;NU;, we have focpj_l = (fop; Ho(piop;).

Exercise 1.3. If X is a connected compact complex manifold, any holomorphic map

f: X — C is constant.

Proof. My proof: f is open.

Professor’s proof. By maximal principle. Take 2y € X such that |f(zg)| = max |f(2)].
Then f admits a local maximal. Choose a locally chart (U;, ;) around xq at xg, then by
maximal principle, f o ¢; ! : ;(U;) — C is constant. Then f = f(x) in U;.

Let O be the open set {z € X : 3V (2)s.t.fly () = f(zo)}. Then U; C O hence O is
not empty. But O is also the closed subset of X = {z € X : f(2) = f(z0), 57{ = 0}. Then

O is a non empty, closed and open set in X, hence O = X. 0

Definition 1.6. Let X and Y be complex manifolds. A continuous map f: X —Y isa
holomorphic map, if for every chart (U;, ;) of X and (Wj,v;) of Y, we have

Piofoprt (Ui fHW;)) — (W)



s holomorphic.

f: X — X is a biholomorphism if f is holomorphic, bijection and f~1 is holomorphic.
It is enough to verify that f is holomorphic, bijective and df (u) is invertible for any u € X.
The group of biholomorphisms of X is also called Aut(X).

Exercise 1.4. (1) Aut(X) with X = PL(C) s

PSL(2,C) = { (Z Z) € GL(2,C) : ad—bc # 0, (Z Z) [21: 22] = [az1+Db2a : czl+dz2]}.
(2)
1 a b a b
Aut(H") = PSL(2,R) = { (c d) € GL(2,R) : ad—bc # 0, <c d) [21 1 z0] = [az1+D2o : czﬁ—sz]}.
(3)
Aut(C) = {f € Aut(P}(C)) : f(o00) =00} ={az+b:acC*becC}.
Proof.

(1) See Exercise 1.1.

(3) Claim: f must be a polynomial. If not, g(z) = f() has an essential singularity.

Casorati-Weierstrass theorem. If g : C* — C has an essential singularity at 0, then
g maps any neighborhood of 0 to a dense set. If not, there is & € C, € > 0 such that
g(U)ND(a,e) = &, hence h(z) = m is bounded around 0 so holomorphic on U.
Then ¢g(0) = ﬁ + «, impossible.

Look at V' = {z : |z| > 12}, then f(V) C C is dense. But f({z : |z| < 12} is open,
f can’t be injective! So f must be a polynomial. And f must be of degree 1 by

injectivity.
(2) We prove that Aut(D?) = PSL(2,R).
Fix a € D, consider ¢,(z) = 2=~ € Aut(D). Given f € Aut(D), a := f(0) consider

1—az

9= a0 f € Aut(D), g(0) = 0.

Schwarz’s lemma. f : D — D holomorphic with f(0) = 0, then for any z € D,
|f(2)] < |z|. Moreover, if equality holds at a point, then there is § € S! such that

f(z) = ez
lg(2)| < |z| and |g~1(2)| < |z|. Then equality holds.



1.3 Quotient space

Exercise 1.5. Let X be a complex manifold and I' C Aut(X) which acts on X properly

and discontinuously, meaning that for any K1, Ko compact sets in X,
#{yel v - KiNKy # 3} < +oo,

and I acts without fixed points: if v-x = x for some x € X then v = id.
Then X /T is a complex manifold and X — X/T" is a local biholomorphism.

Exercise 1.6. Let C2\ {0} = X and T’ = (2) : (21,22) ~ (221,229). Then C?\{0}/(2) is a

Hopf manifold diffeomorphic to S' x S* and endowed with a complex structure (Here we

treat S' x S? as a real manifold, hence we can endow S' x S® with this complex structure).
Proof: from the polar coordinate, R*\ {0} =0, 0o[xS3.

More results is in Fxample 1.6

Definition 1.7. Let X andY be complex manifolds and f : X — Y be a holomorphic map.
Then f is called a submersion if Vx € X, rank(df(z)) = dimY (hence dim X > dimY).
f is called immersion if df (z) is injective at any x € X (hence dim X < dimY).

Definition 1.8. Let X be a complexr manifold and V- C X be a subset. Then V is called
a complex submanifold of X if for any v € V' there exists an open set v e U C X and
a holomorphic submersion ¢ : U — D* such that UNV = ¢~ 1({0}).

In local coordinates, by the constant rank theorem we have (1;) such that

(Soowi_l)(zlv”' 7271) = (zlv”' 7Zk)'

In these coordinates, the subset VMU is defined as ; "(D"N{z = - =2, =0}). Itisa
local chart proving that the complex submanifold V is a complexr manifold of the dimension

n — k. We call k the codimension of V in X.

Construction of submanifolds

Theorem 1.4. Let f : X — Y be a holomorphic map between two complex manifolds.
Lety €Y and assume that Yz € f~1({y}), the rank of df (x) is the dimension of Y. Then
f~*({y}) is a complex submanifold of X of dimension dim X — dimY".

Proof. This is an application of constant rank theorem. Let x € f~1({y}) and in local
coordinates (Uj, ¢;) in the neighborhood of  and (W}, ;) in the neighborhood of y, we
have (0 fowp; ) (21, ,2n) = (21, , zm). Locally f~'(u) is parametrised in the chart
@i by (0,---,0,2m11, -, 2,). Then f~1({y}) is a submanifold of dimension n —m. [

Example 1.5. {2? 4+ y? + 22 = 1} is a submanifold codim 1 in R3.

Exercise 1.7. The only compact submanifold in C™ are points.



Proof. Let V be a connected compact submanifold of C". For any coordinate zx, zi|v :
V' — C is a holomorphic function on V. Since V is compact, z; is constant hence V is a

set of one point. O

Definition 1.9. Here we ignore the definition of complex projective space, but we

emphasis that the projection from C"*t1\ {0} to P"(C) is holomorphic.

Example 1.6. Recall that we defined Hopf manifold in Example 1.6 as C*™\{0}/(z1, -+ , 2nt+1) ~
(221, ,22p41). The map M := C"1\ {0}/Z — P*(C) = C**1\ {0} /C* is holomorphic
and the fibers are identified with C*/Z (here Z is generated by x2).
The exponential map C — C* is a universal cover. exp(z1) = exp(22) <= 21 = 22 +
2ikm, hence exp : C/2inZ = C* is a biholomorphism. Then exp : C/2inZ+1n27Z = C*/(2).
The fibers of the projection C — C*/(2) are the elliptic curves exp : C/2inZ + In 27.

1.4 Complex projective manifolds

Definition 1.10. Compact submanifolds in P™(C) (they are called complex projective

manifolds).

Proposition 1.1. V C P*(C) is a complex projective manifold if V is a submanifold in

P™(C) and there are f1,--- , fr homogeneous polynomials in Clxg,--- ,x,] such that
V= {[zo,--- yzn) €PM(C) : fi(z0, - y2n) =0,V € {1,--- ,k}}

There is a theorem of Chow proving that any complex submanifold in P (C) is a complex

projective manifold (GAGA Principal).

Example 1.7. Let f be an irreducible homogeneous polynomial in Clz,y, z] such that

0 0 0
((0.02) €€ Sy 2) = G (@2) = 5L (092) = G (wn2) = 0) = 2.

Then V = {[z,y,2] € P2(C) : f(z,y,2) = 0} is a 1-dimensional submanifold and hence a

complex projective curve in P%(C).

Proof. Euler formula, if f is homogeneous of degree m, f(Az, Ay, A\z) = X" f(x,y, z), then

JOF L 0f o

Ox oy “ 0z mf-

Indeed, take derivative with respect to A,

g g g _ m—1
To (Ax, Ay, \z) + yay (Az, Ay, \z) + 2 (Az, Ay, A\z) = mA™ " f(z,y, 2).

Then take A = 1.
Take p = [z, y, 2] such that z # 0. We check the coordinates in the neighborhood of p

such that (u = Z,v = %),



Assume f(p) =0, then f(u,v,1) =0 in coordinates (u,v). There is at lest one of the

derivates %(u, v,1) and %(u, v, 1) is non zero. Indeed if by contradiction,
of of
1)=— 1) =— 1)=0
f(u,'U, ) au(u7vﬁ ) 87} (u,'U, ) )
by homogeneous, we get f(z,y,2) = %(m,y,z) = %(ﬁ,y, z) = 0 and by Euler formula
%(w, y,z) = 0, a contradiction!
The same proof implies that for any irreducible homogeneous polynomial f € Clzg, - - , 2]
such that O
More general: Assume fi,-- -, fr are homogeneous polynomials in C[zg, - - ,zy] such
that rank (%) is r at each point. Moreover if assume r = k, thus it is enough
i/ 1<i<k,1<j<n
to assume that r = k at points on the vanishing set. (Constant rank)
Then
V= {(zo,--' ,zn) € CHL fi(20, - - y2n) =0,V e {1,--- ,k:}}
is a complex submanifold of codimension 7 in C**!\ {0} such that (29, - ,2,) €V <=

(Az0,- -+, Az) € V¥V € C*.

Then V = 7(V), with 7 : is such that
V={veP"C): fi(v) =0Vl {1, k}}

is a complex projective manifold of codimension r in P™(C).

1.5 Real and complex vector bundles

To any real or complex manifold X, one associates a canonical manifold T'X which is its

tangent space and has dimension 2dim X. TX is an example of vector bundle over X.

Definition 1.11. Let X be a manifold (could be real or complex). A real (complex) vector
bundle over X is a manifold E endowed with a submersion w: E— X such that there is
an open cover (Uy)acr of X by the open sets U, with the property that for all o € I, there
is To : T H(Uy) =N Uy X R™ a diffeomorphism such that p1 o 7o = .

Moreover if UyNUg # &, then n= 1 (UaNUg) C 71 (Uy) and 71Uy NUg) C 71 (Up),

Tg 0 7'071 :(UanNUg) x R" = (Ua NUg) x R", (u,v) = (u, gga(u)v),
where ggo : Uo N Uz — GL(n; R).

Remark 1.2. 7,0 ’7’51 = (tgo1y "), and hence gap(u) = 9,5; (u).
If UoNUgNU, # @, we have gory - §48 - 9o = 1. Also gaa = 1. We will see those
conditions define “1-cocycle” with values in GL(n,R) or GL(n,C) in sheaf theory.

Definition 1.12. If X is a complex manifold and E is a complex vector bundle such that

the transition cocycle ggo : UoNUg — GL(n,C) is a holomorphic map. Then E is complex

10



manifold and m : £ — X is holomorphic. This is called holomorphic complex vector
bundle.

A map s : X — E is called a section if mos = id. The section is holomorphic if E
is a holomorphic bundle, and s : X — FE s holomorphic as maps between two complex

manifolds. The space of sections of a vector bundle is a vector space.

Definition 1.13. A rank n holomorphic vector bundle is trivial iff it admits n linearly

independent (global) holomorphic sections.

Remark 1.3. Notice that not all holomorphic vector bundles admit holomorphic (global)
sections. But all of them admit (local) sections over the sets (Uy)acr-
By definition 1= (U,) =% Uy x C™ holomorphic and 7,1 0 s, is a section of 71 (U,,),

where sq(u) = (u,(1,0,---,0)). Moreover, ;" o sa|u, will never vanish.

Definition 1.14. Two vector bundles By — X and Ey =% X are isomorphic if there
evists [ : E1 — Ey a diffeomorphism with moo f = 71 and for anyx € X, [ : Wfl({x}) —
75 ' ({x}) is a vector space isomorphism. i.e. at each x € X, f gives an isomorphism

between F1 5 and Ea .

E1 ! EQ
X

Construction of holomorphic vector bundle

Example 1.8. Assume X is a real manifold with an atlas (U;, pi)icr then the real vector
bundle over X defined by the cocycle U; NU; — GL(n,R), u = d(pj o ;) (pi(u)) is the
real tangent bundle TX of X. It is a manifold of dimension 2dim X .

This bundle is isomorphic to the bundle of 1-jets of maps from R into X given by
the following geometric construction.

E as being the space of curves: v :] —e,e[— X and v1 ~ v if 71(0) = 12(0) and
71(0) = ~4(0) is true in a local coordinates, this will be true in any other local coordinate.

E ={v}/ ~ (1-jets of curves), E — X, [y] — ~(0).
Exercise 1.8. Verify TX is given by the previous cocycle d(pj o (pl-_l).

Assume X is complex manifold with local charts (U;, ¢;). Then the cocycle d(p;o¢; ')
is with values in GL(n,C) and holomorphic. It defines a holomorphic vector bundle of
rank 7 over X, called the holomorphic vector bundle T'X.

Another construction of T'X is given by the 1-jets of maps from C to X. We will say
that the holomorphic map

v1:D(0,e) ={|]z| <e} = X

7(0) =72(0

is equivalent to o iff . Then {7}/ ~ is a complex vector bundle E over
71(0) = 73(0
X through the map £ — X, [y] — (0) and it is isomorphic to T'X.

\_/\_/

11



Vector fields and 1-forms

If f: X — Y is a differentiable map, then df : TX — TY is a differentiable map.

A section of TX is called a vector field on X. Locally a vector filed is given by
f 18%1 + fn% where f; are smooth local functions.

If f: X — Y is a holomorphic map from X a complex manifold to a complex manifold
Y, df : TX — TY between holomorphic tangent spaces.

A holomorphic section of T X is called a holomorphic vector field. Locally it is

n
given by > fr(z1,--- ,zn)% with f; holomorphic function.
k=1
The transition map of P!(C) is z — 2 hence the cocycle of TP!(C) is given by d(2) =
22

U1><C—>U2><(C2U2X(C

(2,0) 5 (5, =) o> (5, 20)

2 22 2’ 22

Exercise 1.9. Find all global sections of TP*(C).

Proof. Assume we have a section s = f(z)% on U; and s9 = g(w)a% on Us. On Uy NUsy,

we have 5 o 9 5
B 1 ow _ l 2 0
f(z)@ N (w) 0z Ow f(w)w ow’
Then on Uy N Us, we shall have
1
—w?f(=) = g(w)

Consider the power series of f and g. Since both f and g are holomorphic on C, we
say they don’t have negative degree part. Hence the maximal degree for f is 2.

Moreover, given s1(z) = f(z)% = (az2+bz+c)%, by setting s = —(a+bw+cw2)a%,
we get a global section.

Then we finally proved that I'(TP!) is spanned by %, z%, 22%, with dimension 3. [J

Definition 1.15. If E is a vector bundle over X, its dual vector bundle E* is defined as
being the vector bundle associated to the cocycle t(g/goé)*1 where gg s the cocycle defining
E.

(E.)* = (m~t({x}))* will be the fibers of E* over {x}.

Remark 1.4. Note that the action of g € GL(n,R) on R™ changes to 'g~! when we
associated the action on (R™)* (7! is due to the reverse direction and ' is because we

change the column vector into a row vector).

In particular (7X)* is the vector bundle over X for which the sections are 1-forms. A
n
local section of X is given by > frdzy, where fi is a smooth function. If X is a complex
k=1
manifold, (7X)* will be a holomorphic vector bundle for which the local holomorphic

n
sections will be given by > fr(z1,- -, 2n)dzr where fi is a holomorphic function. (7X)*
k=1

holomorphic cotangent bundle, also denoted by Q}(
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Example 1.9. P!(C), (TP'(C))* given by the cocycle C* — C*, z v 22.
Exercise 1.10. Find all the global sections of (TP*(C))*.

Proof. Similar to the proof of Exercise 1.9, we say there is no nontrivial global sections of
(TPY)*. O

Definition 1.16. An isomorphism from E to F, where F are holomorphic bundles over
X, is a holomorphic section of (E*) ® F where the holomorphic section is at each point
an isomorphism (Hom(E,F) = E*® F).

Example 1.10. Assume Li and Lo are line bundles (rank 1). Then L3 is given by the
cocycle (g}m)_l, where géa is the cocycle. L] ® Lo is given by the cocycle (géoé)_1 -gga.

Proposition 1.2. L; = Ly iff there is a non vanishing holomorphic section of L7 ® Lo =
Hom(Ly, Lo) iff L7 ® Lo is holomorphically trivial (= X x C).

Theorem 1.5. Let E be a holomorphic line bundle over a compact Riemann surface X.

Then the space of holomorphic sections of E is a vector space of finite dimension.

Example 1.11. If E = X xC, then holomorphic sections of E are holomorphic maps from
X into C. By the maximal principle, those maps are constant. So the space of sections

have dimension 1.

Example 1.12. Tautological line bundle 7.
LcP' xC*\ {0} ={(z,]) : 2 € P, 1 € C*\ {(0,0)},1 = []}.
This defines a holomorphic line bundle over P'(C) with cocycle C* — C*, z + z. Indeed
[z:1] = a(z,1) = az(1,w).

Recall that for two line bundles L1 and Lo given by cocycles glUV and g%v, the line
bundle L1 ® Lo is given by gty - gy - In particular, LY™ is given by (giy,)™. The inverse
of Ly is L' = L},

Thus TP* = 772, and we write 7 = o(—1), o(m) = 7=™, hence TP*(C) = 0(2).

Exercise 1.11. Prove that the space of holomorphic sections of o(m) has dimension m+1

and the space of sections identifies with polynomials in on variable of degree < m.
Proof. Similar to the proof of Exercise 1.9. O

Remark 1.5. The space of holomorphic sections is a vector space called H*(X,L). We
will see that HY(X, L) will also be of finite dimensional.

Proposition 1.3. The space of smooth sections is of infinite dimension.

13



Proof. For the trivial bundle X x C, they are C* maps from X into C. Moreover for
any line bundle L, consider a local trivialization: there is U C X such that L|y = U x C.
Consider the section s : U — U x C, u — (u,1) which gives a section of L|y. Take
p: U — RT a bump function with Supp(p) C U. Then p - s will extend by zero outside
U. O

Let us restate Remark 1.5

Theorem 1.6. Let E be a holomorphic line bundle over a compact Riemann surface X.

Then H(X, L) is a vector space of finite dimension.

Proof. We prove, by Riesz theorem, that for some norm on H°(X, L), the ball of radius 1
is compact.

We will endow L with a hermitian metric, meaning that on each fiber L., x € X, we
have an inner product: L, = C, we take |z|. In a local trivialization L|y = U x C, we
consider h = |z|.

Let X = |J U, such that L|y, = U, x C, consider smooth functions p, : U, — RT

a€cl
such that Supp(pa) C Uy is compact and > p, = 1 (and locally finite).
acl
Define the hermitian metric h on L as being Y pal|zq|, where L|y, = U, x C. For

a€cl
any section s € HY(X, L) we define ||s|;, = max h(p)(s(p)). We want to prove that the
pE

unitary ball of H°(X, L) is compact.

Let (sp)n>1 € HO(X, L) such that ||s,|ln < 1. As before let X = |J U, such that
acl

L|y, = U, x C. For technical reason, consider W, C V, C U, such that W, C V,,
Vo CUyand YW, = X.

On Uy, thgre is a nowhere vanishing sections s, € H°(U,, L) which trivializes L|y,,
Snlu, = fn  Sa for fr, € O(U,).

1> [Isplualln = [foloo - miﬁh(p)(sa(p)),
pEVa

hence on V,, | fn| < ﬁ, i.e. fp is bounded on V,. Then (fy)n>1 is an equicon-
min_ h(p) sa(p
PEVy

tinuous family on W,. By Montel theorem, (fy)n>1 admits a subsequence which converge
on W,. Then there is a unique f$ € O(W,) and a subsequence o : N — N, such that
lim fo‘(m) = f% and the convergence is uniform on any compact set in W,.

n—oo 7
We can use the diagonal process to get that for any o € I, lim f;"(n) = feo. On
n—oo

Wo N W3s # @, there is a cocycle condition f = gag fff hence f;f‘(n) = Jop ff (n) hence
& = 9ap ffo. The f¢ glue into a global section of H°(X, L), hence ss is a limit of
So(n)- O

14



2 Riemannian Surface

2.1 Definitions and Isothermal Coordinate

Definition 2.1. Let V be a real vector space of dim 2, oriented. A complex structure
on V is j € End(V) such that j o j = —id and we will ask that j is compatible with the

orientation, Yv € V, (v, jv) is a direct basis, we should think that jv =i - v.

Proposition 2.1. The complex structure on V is equivalent with an inner product on V

up to a resealing.

Proof. Assume we have g, then define jv as being jv L v and ||jv| = ||v||, then (v, jv) is
a direct basis compatible with the orientation.

If g1 and go are two inner products, g; and go define the same complex structure if
J\ € RT such that g; = Ago.

Assume j is defined, then define g as the following inner product
[oll = A, llgvll = A, (v, jv) = 0.
Thus define g up to a constant. O

Definition 2.2. Let S be a surface. We assume S is oriented, meaning there exists an
atlas defining S such that the transition maps ;o (pj_l have o differential which is positive

det(d(p; o cp;l) > 0.
Remark 2.1. Any Riemann surface is oriented.

Definition 2.3. A complex structure on Riemann surface S compatible with the
orientation is a smooth section j € End(TS) such that joj = —id and Yv € T'S, (v, jv)
is a direct basis.

For a Riemann surface, multiplication by i: ((1] *01) defines a complex structure.

Definition 2.4. A Riemannian metric on S is a smooth section of Sym?(T*S): it is
an inner product g, on each tangent space T, S, ¥Yx € S, which is smooth with respect to
x € S in the following way:
n
If o : R? — S, 0+ m is a local chart in a neighborhood of m € S, p*g = gijdr;dz;,
Z'7j
n
> bj% are local vector fields, then g(X,Y) =
-1 J

n
meaning that, if X = ) ai% and Y =
i=1 ' j=

n
> aigijbj.
ij=1
Two Riemannian metrics g1 and go are conformal if I\ : S — RT such that g1 = \go.
We will say that a Riemannian metric g on S is compatible with the complex structure
if there exists local coordinates in which g = Xz, y)(dx?®+dy?). This condition means that

the complex structure defined by g is the one given by Xi.

Proposition 2.2. Let S be a Riemann surface. Then there exists a Riemannian metric

on S which is compatible with the complex structure.
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Proof. Take holomorphic coordinates p; : U; C C — p;(U;) C S and in each holomorphic
n
coordinate consider g; = |2;|? = 22 + y? and consider a partition of unity p;: g = 3. pigi.
i=1
O
On surfaces we have an important result:

Theorem 2.1 (Isothermal coordinates (local)). Let g be a Riemannian metric on a
surface S. Then for any p € S, there exists a local chart ¢ : U C R? — p(U) C S, 0+ p,
such that o*g = Mz, y)(dz? + dy?), X : U — R*.

Lemma 2.1. Let g be a Lorentz metric on a surface S. Then for any p € S, there exists

local coordinates at p, such that g = Xz, y)(dz? — dy?).

Proof of the lemma. g1 and go two Lorentz metrics are conformal: I\ : S — RT g1 = A\go
iff {v e TS:g1(v)=0}={veTS:gs(v) =0}. The standard gy = dr? — dy? admits two
line fields of isotropic vectors: A; = {x =y} and Ay = {y = —x}.

Consider L1 and Ly the two isotropic lines of g and we want to identify them on Aj
and Aj.

Exercise 2.1. XY, find local functions f,g such that [fX,gY]| =0, then there is a local
change of coordinates, p.(fX) = 6%7 p«(gY) = 8%'

Proof of the exercise. Note that %Y — #X = [Y, X], hence we can solve out f and g.

The existence of x,y is constructed by flow, or by baby version of Frobenius theorem. [
O
Proof of Isothermal coordinates by Gauss. Here we use the convention that
dxdy = %(dm ® dzr + dy @ dy).
Complexify the metric and look to the isotopic lines in the complex domain.
g(x,y) = a(z,y)dx® + 2b(x, y)drdy + c(z,y)dy?

and think of it on an open set in C2. The same proof shows that you can rectify (find

local coordinates) the metric on A(z,y)(dx — idy)(dx + idy) = Xz, y)(dx? + dy?).
1
g= a(ad:n + (b+ivVac—b?)dy)(adx + (b — iV ac — b?)dy) = wiws.

Then w; is a holomorphic 1-form on an open set in C2, Kerw; defines a family of curves
which are locally given by an equation f(x,y) = constant, Kerw; = Kerdf. There is a
function h : U — C*, then wy = hdf = h(du + idv).

On R?, wy = w1 = h(du — idv).

1 1 — 1
g = —wiwy = ~hh(du + idv)(du — idv) = a|h|2(du2 + dv?).

16



Corollary 2.1. Let j € End(T'S) such that joj = —id. Then there ezists local coordinates
in which j is jo = ((1) _01).
Corollary 2.2. Any oriented surface S admits complex structures.

Proof. Consider a Riemannian metric g on S. Consider all oriented local coordinates
where g is A(x,y)(dx? + dy?). The transition maps are local diffeomorphisms, preserving
the angles of the euclidien metric and preserving orientation, then they are holomorphic

maps. O

Remark 2.2. Similar to the vector space case, on Riemann surface, g1 and g will produce

the same complex structure if I\ : S — RT such that g1 = \go.
Proposition 2.3. (TPY)* admits no sections.

Proof. First proof. Let w € H°(P', T*P'). w = f(y)dy, where f holomorphic. Then
—f (é)y%dy is holomorphic, hence f = 0 (This proof is similar to Exercise 1.9).

Second proof. w € HO(PY, T*P!) and X € HY(P!,TP'). Then w(X) € H°(P!,C),
since P! is compact, w(X) is constant. Since X has zeros on P! (Harry ball), the constant

is 0. On the open set where X is nowhere 0, we say w is 0 everywhere, hence w is 0 on
X. O

Remark 2.3. The second proof shows that a nontrivial line bundle cannot have holomor-
phic forms and holomorphic vector fields at the same time.
2.2 Uniformization of Riemann surface

In this section we assume all the surface to be connected as a priori.

Theorem 2.2 (Riemann). Let U ; C be a simply connected, connected open set. Then

there exists an biholomorphism ¢ : U — {z € C: |z| < 1} =D.
Proof. In the devoir. O

Example 2.1. U = H = {z € C : Imz > 0}, then p(z) = 2% is a biholomorphism

zZ+1
between H and D.

T/

Remark 2.4. By considering z™'“, every sector is biholomorphic to a half plane.

Given a strip, after a suitable rotation (z — Az), it is horizontal. Consider n — €'

we get a sector.

Remark 2.5. There is not (by Poincaré) ¢ : C — D biholomorphism even if D and C

have the “same” real structure.

Proof. Any holomorphic ¢ : C — D is a constant. O
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Theorem 2.3 (Uniformization of Riemann surface, Poincaré). Let S be a Riemann
surface and assume that S is simply connected and connected. Then S is biholomorphic

to PY(C) (when the Riemann surface is compact), or to C, or to .

Remark 2.6. P1(C) and D don’t have the same real structure, there are not homeomor-

phism since D is not compact. The same reason for P*(C) and C.

Proposition 2.4. Recall
Aut(P') = PSL(2, C);
Aut(C) = {az+b:a € C*,b € C} motions;
Aut(D) = PSL(2,R).

Remark 2.7. The biholomorphism gives a conformal map between S and the three basic
model, whose curvature is +1,0, —1 respectively.

Particular case. Let g be a Riemannian metric on R?/Z?, then g is conformally equiv-
alent to dx? + dy? (Find the universal covering).

For the hyperbolic case, the biholomorphic is indeed an isometry (this can be proved by

direct calculation).

Corollary 2.3. Let S be a compact and simply connected, therefore S is diffeomorphic to
S2.
Proof. A simply connected surface is orientable. Furthermore, we can endow it with a
Riemannian metric g. Therefore S is endowed with a complex structure by the theorem
of isothermal coordinate 2.1.

Then there is, by the uniformization theorem 2.3, a biholomorphism ¢ : S — U, where
U =P!(C), C or D. Since P}(C) is the only compact model, we have ¢ : S — P!(C) hence
S is biholomorphic to S?.

Furthermore, this shows that (S, g) is “uniformly” conformal equivalent to S? with its

canonical metric. O

Exercise 2.2. Prove that any isometry that preserves g is in the orthogonal group O(3,R).

Proof. Let f to be the isometry on S? C R3. Define F : R3\ {0} — R3, 2 ~ || - f(f;—'),
then extend it continuously to 0. Since S? C Im f, F is onto.

f is an isometry on S?, hence it preserves the distance in S?. Note that the distance is
just the angle between two vectors with endpoints in S?, hence f preserves the angles. By
the construction of F', we say A(0,z,y) and A(0, F(z), F(y)) are two congruent triangle.

Then
(F(x), F(y)) = (z,y).
So F also preserves the inner product in R3.
(F(ax + by) — aF(x) — bF(y), F(2)) = (az + by, z) — (az, z) — (by, z) = 0,Vx,y, z € R>.
Then we have F' is a linear map. Moreover it preserves the inner product, hence F' €

0(3,R). O
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Remark 2.8. The topological result was know before the “uniformization theorem”: Any

simply connected surface is homeomorphic to S* or R?.

2.3 Complex structure and hyperbolic geometry model

We have three model of hyperbolic geometry.
Aut(D) = {ew% :0 € R,a € D}.

By direct calculation, we say the biholomorphism on D preserves the metric (lﬁi‘% with
negative constant curvature.
D = H semi-plane model. Aut(H) = Stabg(Aut(P!)) = PSL(2,R). H with the

Poincaré metric d‘”l%d?ﬁ is isometric to (D, %) and Aut(H) preserves this metric.
Consider R? with the standard orientation, the set of complex structure compat-

ible with the given orientation is

Comp™(R?) = {J € End(R?), J o J = —id, (v, Juv) is an oriented basis, Vv € R?}.

0
What can we say about the eigenvalues of J? J? 4 id = 0 gives that the eigenvalues

of J are +i. J is similar to Jy in Mayx2(C), hence there exists P € SL(2,R) such that
PoJoP =,

0 -1
In this case i x v = Jv. We denote the standard example R? = C by .Jy := (1 ) .

1. Hyperboloid Model: Comp™ (R?) is a homogeneous space for the action of SL(2, R)
by conjugacy. TrJ = 0 and det J = 1, hence

a b

cC —a

Comp+(R2)={J= ( ) :a,b,ceR,detJ:—aQ—bczl},

det J = —a? —bc = —a? — (249)2 + (25¢)%. Then det J = 1 defines the “hyperboloid”
in the space {z = a,y = bi;, z= %} Given by the equation —z2 — y? + 22 = 1.
The quadratic form Q = — det J = 22+y% — 22, then the hyperboloid will be Q = —1.

det(PJP~!) = det J, VP € SL(2,R) then Q = —det is invariant by the action of
SL(2,R) (PSL(2,R) =2 O(2,1)).

Q@ has (2,1) as signature. However Yv € hyperboloid, i.e. Q(v) = —1, we have
T,(Q7'({-1}) = v*¥.

Now we have that the space of complex structure on R? is equivalent to a hyperboloid

with the Lorentz metric.
2. Upper half plane model:
Comp™ (R?) = {¢: R? = R : ¢ symmetric positive-definite linear functor}/q ~ Aq.
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Set ¢ = ax® +bry +cy? ~ 2%+ bxy +cy? for b, ¢ € R, and we can see that ¢ uniquely
determines and also is uniquely determined by z € C with Imz > 0 (the equation
must have imaginary roots), hence we conclude that the space of complex structure
on R? is equivalent to the upper half plane (maybe by calculation we say with the
. dx?+dy?
metric T)

Disc model: We can also write g = A|z + ®z|?, A > 0, |®| < 1 (guarantees that the

main part of g is |z|). Here |®| < 1 is because if |®| > 1, we have
— 1
g= ANz +OZP =Nz + D22 = \D| - |2 + gzﬁ.

Hence g is equivalent to |z+ %ZP with |%| < 1. And by direct calculation, |®| cannot
be 1. Thus ® gives the model of the disc.

Corollary 2.4. By considering the set of complex structure on R?, we get hyperboloid,

upper half plane and the Poincaré disc as hyperbolic model, with their canonical metric.

2.4

Quotients of the three simply connected Riemann Surface

In this subsection we discuss the classification of Riemann surfaces.

Given S a Riemann surface, therefore S is biholomorphic to S/m1(S), where S is the

universal cover of S and 71 (.5) is a discrete group whose actions on S is biholomorphisms.

This action is properly discontinuous without fixed points. S is indeed a connected

and simply connected Riemann surface and S % S is holomorphic.

Since S is simply connected we can apply the uniformization theorem. There is p:
S — U biholomorphism where U is either P!, C or D.

Case 1

Case 2

U = P! (when the universal cover is compact).

We have that S = P!/m(S), with 71(S) the fundamental group of S that acts on
P! without fixed points by biholomorphism.

We know that Aut(P!) = PSL(2,C), where every v = ZZZIS € PSL(2,C) admits

at least one fixed point (since there is always a “proper line”, the matrix can be
triangulated). Then 71(S) = {id}, therefore $ = S = P'. The unique Riemann

surface that is covered by P! is P!.

Corollary 2.5. The only Riemann surface which is covered by P! is itself, due to

there is no biholomorphism map on P without fized point.

U=C.

Now S is holomorphic to C/m1(S) where 71(S) acts on C by transformations of

covering that are biholomorphisms. Recall that

Awt(C)={z2—az+b:aeC" be C}.
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If a # 1, the transformation z — az 4 b always admits a fixed point in R: az 4+ b =
z=z= 2. Then m(S) C {z+> 2 +b:b e C}. Som(S)isa discrete subgroup of
the translation group.

We have only 3 cases for m1(S) (if we have three translations that are rationally
independent, we can prove that there are some actions converging to id, which

contradicting proper discontinuity.)

(i) m1(S) = Z generated by a translation z +— 2z + w, in which case we have
C/(z = 2z + w) = C* by exp(2irZ).
(ii) m1(S) =2 Z? generated by 2 translations z + wy, 2 — wp with oS¢ R
S is an elliptic curve C/Zw; @ Zws, in particular S is biholomorphic to S! x S!.
C/Zw1 + Zws is biholomorphic to C/Z® 77 with Im 7 > 0. Moreover, C/Z®77Z
is biholomorphic to C/Z & 7'Z iff 3g € PSL(2,Z) such that g7 = 7'.
(iii) m1(S) = {id}. Then S = C.

Corollary 2.6. If S = C then m1(S) acts on C by translation. S = C/m(S) admits
a flat Riemannian metric by |dz|> = da® + dy* (covariant by translation) and it is

compatible with the complex structure.

Case 3 U = D. Hyperbolic geometry.
S is holomorphic to D, also to H. In this case S = S/m(S) where m(S) is a

discrete subgroup that acts on S by biholomorphisms and the action is proper and
discontinuous. Therefore 71 (.S) preserves the hyperbolic metric of S. This hyperbolic
metric, induces a Riemannian metric on S, compatible with the complex structure

with negative constant curvature.

Corollary 2.7. If S is a (complete?) Riemann surface, then S admits a complete Rie-
mannian metric of constant curvature compatible with the complex structure.
More precisely, this metric h is a positive constant curvature if S~Ppl o if S>~C

and negative if S = D.

Corollary 2.8. If S is an orientable surface, any Riemannian metric on S is equivalent
to a complete Riemann metric with constant curvature.

In the case where S = P! we saw that 7 (S) = {1}. When § = C, we saw that
m(S)=2Z (S=C*) orm(S) =7 (S=C/Z® TZL).

Results on hyperbolic case

From the discussion above, we’'ve seen that the structure for the formal two cases is very
easy, and our rich structure is in the last case.

Now what can we say about m;(S) when S = D?

For a Riemann surface that is compact if genus g > 2, we know that m1(S) is not

abelian (a topological result), then S = D.
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Corollary 2.9. Any compact Riemann surface of genus g > 2, is covered by D. In

particular, admits a complete Riemannian metric of curvature —1.

If S=D, S =5/m(S), and 71(S) acts by biholomorphisms on S = D preserving the

hyperbolic metric and without fixed point.

Remark 2.9. Any action of a discrete group that preserves a metric is proper and dis-

continuous.

How can we know that a discrete subgroup I' = 7;(S) < PSL(2,R) = Aut(H) acts

with a compact quotient and without fixed points?

Proposition 2.5. I' = m(S) < Aut(H) acts without fized point iff I is without torsion
(If v € T, n > 1 such that ™ = id then v =id). T acts on H with a compact quotient iff
PSL(2,R)/T is compact.

b
Proof. First we say that H = PSL(2,R)/Stab(i). Moreover, for matrix <a d) €
c

PSL(2,R), it fix i when 28 =i, that is,

a=d,b= —c,with a®* 4+ b? = 1 = Stab(i) = S'.

Thus
H = PSL(2,R)/ Stab(i) = PSL(2,R)/S",

and the map PSL(2,R) — H is a fiberation whose fiber as a circle. We identify this
fiberation with the unit tangent bundle (tangent vectors with norm 1) for the hyperbolic
metric.

Since the stabiliser is a rotation, we say H is a symmetric space, that is for any z,y € H,
v; € T,H and vy € T,H, with |v1| = 1 and |vp| = 1, then there is g € PSL(2,R) such
that gr = y and dg,v1 = vo. This shows that the action of PSL(2,R) on PSL(2,R) is
transitive.

PSL(2,R)/T" is the unit tangent bundle of H/I', hence PSL(2,R)/T" is compact iff H/T'
is compact.

If I' acts without fixed point, then obviously it has no torsion. Let’s assume that I' is
without torsion, we shall show that I' acts without fixed points in H. In fact, if v admits
a fixed point, i.e. there is zg € H, v - 9 = xq, then Vn € Z, 4" - ¢ = xy.

Let’s consider in the model D and assume zg = 0, we must have v~ " € €, Vn € Z.
Since {y" : n € Z} must be a discrete subgroup of S!, hence it is a finite set, then IN € N

such that 4V = 1. Then 7 is an element of torsion. O

Remark 2.10. 2 quotient spaces of D : D/T'1,D/Ty with Ty and Ty discrete subgroups
without torsion are biholomorphic iff 3p € PSL(2,R) such that p o'y 0 o~ ! =T'y.

Proof. A biholomorphism from D/I'; to D/I'y lifts to a biholomorphism of the universal
cover D with corresponding to an element of PSL(2,R) that conjugate I'; and T's. O
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2.5 Some statements and the proof of uniformization theorem I

Theorem 2.4 (Gauss, Row-Liditenstewi). S is a surface and j € H°(End(TS)) is an
almost complex structure, then Vs € S, there is ¢ : (v,s) — (p(v) € C,0) a local diffeo-

morphism between an open neighborhood U of s in S and o(U) an open neighborhood of 0
in C such that ¢(s) =0 and do(j - v) = ide(v), Vv € TU.

Remark 2.11. This is a theorem of local integrability of almost complex structures in
C%-case that we proved in Theorem 2.1.

Recall that on a surface S, if S is endowed with an orientation, the almost complex
structure j is given by a Riemannnian metric g (and X - g with A : S — Ry defines the

same j ).

Theorem 2.5 (Poincaré-Rorbe). Let j be an almost complex structure on a simply con-
nected surface S. Then there is a global diffeomorphism p: S — M, where M is either
P!, C, D, such that dp(j - v) = idp(v), Vv € TS.

Recall that the space of complex structure on R? = Hyperbolic space. If g is a quadratic

form on R? =2 C,

e g = ax?® + 2bxy + cy?, ac — b*> > 0,a,c > 0. This gives the hyperboloid model

b
det (a ) =—a?~bc=1. g=a(z+ py)(z+py).
cC —a

e g=a-|z+py*,a>0.Imp>0. pgives the model of the upper-half plane.
e g=Az+®z>, A >0, |®] < 1. ® gives the model of the disc.

If U C C is an open set in C, any almost complex structure on U is defined by the
conformal class of a Riemannian metric g = \|dz + ®dz|? with ® : U — D.

Let w = dz+ ®dz € Q' (U, C), it is a differential form of degree 1 which defines j by the
formula w(j - v) = iw(v),Yv € TU. In the case ® = 0, the w gives the standard complex

structure given the inclusion U C C. By direct calculation, we have

0 _A+|9P0 2% O
T, = 1—1®)20z 1—|®20z
Remark 2.12. If f : U — C is a C*°-function, w and fw define the same almost complex

structure.

In order to prove the local integrability of j, one should find a local diffeomorphism
VU:V CU— ¥(V)in C such that f-w = d¥. Indeed, in this case d¥(j-v) = fw(j-v) =
ifw(v) =id¥(v). By Poincaré lemma, we just need to find f such that f -w is closed.

3f,¥ : U — C such that fw = d¥ in a neighborhood of a given point iff there exists
f:U — C such that d(fw) = 0.

fw = f(dz + ®dz) = fdz + (f®)dz.
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Then d(fw) = 0 iff
of _9(f®)
0z 0z’

this is called Beltrami equation. Moreover, V is a local diffeomorphism iff f does not

vanish.

Theorem 2.6 (Isothermal coordinate theorem). Let U C C and an almost complex
structure on U given by a map ® : U — D (j is define by the condition that dz + ®dz €
OY(U,C) is C-linear). We can find a coordinate ¥ : V. — W(V) with V C U C C such that
dV(j -v) = idV(v). It is equivalent to find a solution f of Beltrami equation of _ of®)

0z — 0z
defined on V' and such that f(v) # 0 for allv e V.
Remark 2.13. To make dz + ®dz preserve the orientation, we need |®| < 1.

Lemma 2.2 (Technical lemma). Let v(z,t) : R?/7Z2? x [0,1] — D be a smooth function
such that v(z,0) = 0, then there exists a smooth function f : R? x [0, 1] such that % = %
and f(z,t) is not identically zero for any t € [0,1] and f(z,0) = 1.

Remark 2.14. The method is for any unknown ® : R?/7Z? — D, consider v = t®.

For any t € [0,1] the almost complex structure is given by wy = dz + v(z,t)dz.

Lemma 2.3 (Strong technical lemma). Moreover, in technical lemma we have f(z,t)

does not vanish for any t.

Logic:

Technical lemma = Isothermal coordinate theorem.

Technical lemma
= Strong Technical lemma.

Isothermal coordinate theorem

Strong Technical lemma = Uniformization theorem.

Corollary 2.10 (Corollary of the strong technical lemma). Let j any almost complex
structure on R?/Z2. Then there exists a global diffeomorphism ¥ : R?/7Z? — C/A, with A
some lattice in C such that d¥(j - v) =i -d¥(v), for any v € T(R?/Z?).

Proof. Let j be the almost complex structure and we can consider by taking R?/Z? = C/Z?
that j is given by a v : C/Z* — D such that dz +vdz is j — C-linear. We consider the path
of almost complex structure given by tv(z), V¢ € [0,1]. This relates our j to the standard
complex structure on C/Z? given by v = 0 and w = dz.

By the strong technical lemma, there exists f(z,t) with z € C/Z? and t € [0, 1] such
that %J; = % for any ¢ € [0, 1]. Moreover, f(-,t) does not vanish for any ¢ € [0, 1].

vVt € [0,1], f(z,t)-w where w = dz+tvdz is closed. In particular, for ¢t = 1, d(f(z,1) -w)
is closed. This implies first that locally 3¥ : U C C/Z* — ¥(V) C C such that d¥ =
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f(2,1)-w, meanings that our j is locally integrable (we have proved isothermal coordinate
theorem for j).

Pull back the closed form f(z,1) - w to R? = C, and denote the pull-back by & =
f(z,1) - w. There will be ¥ : C — C such that @ = f(z,1)w = d¥, meaning that ¥ is a
diffeomorphism (since f(z,1) does not vanish, d¥ does not vanish) which conjugate the
pull-back of j on C to xi on ¥(C). We will show now that ¥(C) = C. ¥ sends @ on dz
(that is ¥*(dz) = d¥ = @).

U is an isometry in between |©|? and |dz|?> = do?+dy?. Riemannian metrics on compact
manifolds are complete, then |f(z,1)w|? is complete on C/Z2, then |©|? is complete on
C, hence ¥ is a cover and since the target is simply connected, W is a diffeomorphism
between C and C. This implies that ) descends on a biholomorphism between (C/Z2, j)
and C/A, for some lattice A.

Notice that f(z,1)w is a holomorphic form on (C/Z?2, j) since it is C-linear and closed.
We proved that a Riemann surface with a non vanishing holomorphic form is C/A.

A different point view, f(z,1)w holomorphic gives a non vanishing holomorphic vector
field X on S. Then ¢/(t) = X (p(t)) gives C/ Stab — (C/Z2, j) diffeomorphism. O

Corollary 2.11. Let T = R?/Z? endowed with some Riemannian metric g. Then there

is a flat metric on R?/Z?conformal to g.

Proof. In the previous proof we showed that there exists a conformal diffeomorphism
between (R?/Z2,g) and (C/A,|dz|?). ¥ : R?/Z? — C/A is such that U*(|dz|?) = \g. O

The previous corollary proves isothermal coordinate theorem.

Let 0 € U C C endowed with an almost complex structure given by v : U — D.
Restrict v to a D(O,¢) such that |V|Oo7m < § < 1. Extend v a smooth function being
0 on U\ D(O,2¢). Extend v as a bi-periodic function defined of R?/Z2. Applying the
previous corollary to R?/Z? with the bi-periodic almost complex structure. It was proved
that this is conjugated to the standard C/A. In particular, v on D(O,¢) is conjugated to
the standard complex structure on same disk C C.

How to deduce uniformization theorem from the uniformization of almost complex
structures on the torus?

We assume that the topological classification is known, meaning that the universal
cover of a surface is diffeomorphic to P' 22 S? or to R%. We reduce the problem to the case
where the universal cover is diffeomorphic to R2.

Indeed, assume that the universal cover is S?>. We remove a point p, now the complex

structure on S? \ {p} (diffeomorphic to R?) is either D or C
U - (SQ \ {p}’]) biholomorphism D or C.

The target of ¥ cannot be D, because in this case ¥ is bounded and by Riemann moving

singular theorem, ¥ extends to ¥ :S? — D, a contradiction with maximal principle.
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Then ¥ : S?\ {p} — C C P! which is a biholomorphism. Notice that ¥ is a homeo-
morphism, so it sends s a neighborhood of P in S? to a neighborhood of co in P'. Then
coordinate of P! at the infty is %, then % is bounded in the neighborhood of P. ¥ extends
to a holomorphic neighborhood form S? to P! which has a non zero derivative in P since
U is injective.

Hence we can only consider the case of R2.

Let us now consider the case where R? is endowed with an almost complex structure
v :R?2=C — D(O,1). We want to show that there exists a biholomorphism ¥ : (R2,v)
and D or C.

Consider an exhaustion of R? by relatively compact sets

Sy CSyCcS3cC---CcR2S, C Spt1, S, compact, U S, = R2.
neN
We can choose Sy, to be simply connected. Consider v|g, = v, defines a bounded almost
complex structure on S, (there is 6, < 1s.t. |[v| g~ <dp <1).

As in the proof of isothermal coordinate theorem, we extend the complex structure
(S, Vn) to a bi-periodic complex structure on some torus R?/A.

Our theorem of classification of almost complex structure R?/A, there is W : (S, vp,) —
(¥(Sp), xi), and ¥ is a biholomorphism with ¥(S,,) a simply connected open set in C.

By the Riemann theorem (see homework), ¥(S,,) is biholomorphic to the unitary disc
D. So there exists a biholomorphism ¥,, : (S, j) — D (with standard complex structure).
Moreover, we can assume that O € S,,, ¥,,()) = O € D and moreover we multiply ¥,, by
An = ﬁ such that ¥,, = \,-®,, : (Sp,j) — AuD is such that ¥(0O) = O and ¥, (0) = 1.

Fix k € N and look for ¥, 0 ¥,;' : D — \,D, (¥, 0 ¥, 1)(0) = O and ¥,, 0 ¥ *
have all the same derivative at O. Then it is a normal family in the Montel sense and we
can have a subsequence which converges. We find the uniformization map by a diagonal
extraction: the limit will be a holomorphic diffeomorhism from (R2,5) to an open set in
C (which is simply connected). By Riemann theorem. it is either D or C.

Diagonal extraction: (\ijn)nZl is a normal family on Sy C Sk C ---.

Proposition 2.6. Technical lemma + isothermal coordinate theorem, imply strong tech-

nical lemma.

Proof. Let us consider f(z,t) the solution fo the Beltrami equation. We show that {t €
[0,1] : f(z,t) vanishes somewhere on R?/Z?} is a closed and open set in [0,1]. Since
f(2,0) = 1, then this set is not [0, 1], it is @.

Let us first show that this set is closed. Let t;, € [0, 1] such that there is z, € R?/Z>
such that f(zg,tx) = 0 and kli)nolo ty = too € [0,1]. Then (z;) C R?/Z2, then there is
o : N — N such that kli}rgo Ztyqy = Zoo € R2/Z2. Then f(200,t00) = 0, hence to, is in the

set which is closed. O

Now we prove it is also an open set. Let to be such that f(zg,t9) = 0. We can assume

(by changing zp) that f is not identically zero in the neighborhood of zy. By isothermal
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coordinate theorem, we know that the complex structure v(z,tg) is integrable. In local
holomorphic coordinates f(z,1v,)(dz + v(z,ty)dz) is a holomorphic form (it is closed and
C-linear). In local coordinate w, is of the form w™h(w)dw, h holomorphic h(0) # 0 and
w(zp) = 0. When we change ty — ¢, the order of vanishing of this section is still n, hence

f(z,t) vanishes for ¢ closed to t.

Exercise 2.3. Take a 2 : 1 manifold cover of P'(C) above for 4 points: {a,b,c, o0}, then

the Riemann surface is biholomorphic to C/A.

Proof. w= dz - ) pull-back to a holomorphic form which does not vanish.
- zZ—cC
The coordinate above the point a will be v such that z—a = v%. To test what happens

at v =0 (z = a). We have

2
dz = d(v’) = 2’0@ = 2dv,
(z—a) v v

so on the cover the holomorphic 1-form do not have singularity above z = a. At the co in

P!, 2z = u%, and

d —2y~3
4 v _ —2du.

V23 u=3

O

Remark 2.15. For a Riemann surface which has a hole, if there is w holomorphic 1-form.
We can find v1 and o two closed path such that f,h w=a € C\{0} and fw w=>be C\{0}.
Then [; w maps S to C/%.

2.6 The proof of uniformization theorem II

Lemma 2.4. Let v(z,t) : T? x [0,1] — C, |v(2,t)] < 1 and v is smooth (this defines
a family of complex structures on T? such that dz + v(z,t)dz is C-linear). We assume
that v(z,0) = 0. Then there exists a solution f(z,t) to Beltrami equation %f = %(fl/),
VzeT? andt € [0,1] s.t. f(2,0) =1, and f(2,t) is not constant 0 in z, ¥Vt € [0,1].

We will see later that f(z,t) does not vanish for any t € [0,1].

Proof. Since f(z,0) = 1, any function f(z,t) satisfying

a?f_(azoy)f:(azoﬂ)fv f(Z,O)EL

is a solution of Beltrami equation.

Here f and v are partial derivative with respect to ¢ and operations 9, o v are multi-
plication by v followed by 2.

T?, 2 = x1 +ixo, % and % admit eigenvectors which are [,,(x) = el(nrz1tn222) where
n = (n1,n2) € Z, with eigenvalues

1 . 1,.
Ap, = i(ml +ng), A, = §(zn1 —ng).

Then |A,| = |\, ] and X, = —\,,.
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Corollary 2.12. There exists a unique unitary operation in L*(R?/Z?*) such that UO% =
7z © U= az

Proof of the corollary. Define U as the operator which admits [,,(z) as eigenvectors with
eigenvalues % (with modules 1).

Moreover, it commutes with partial derivatives and we can treat U as 05 Lo, O

We will solve the equivalent equation

(id=Uowv)(f) = (Uon)(f).

Then it’s equivalent to solve the following ordinary differential equation in a Banach space

j=(d-Uov) ' Uern)(f),

with initial value f(z,1) = 1.

It is enough to show that the norm of the linear operators is uniformly bounded w.r.t.
t. Then this will imply that there is a unique solution of the ODE, f(z,t) € L?(T?) s.t.
f(z,t) is trivial for any ¢.

Notice that |v(z,t)] < 1, then |[v(z,t)]| < J < 1 for any 2z € T? and t € [0,1]. Then
|lU ov||r2 <6 < 1, which gives that id —U o v is invertible and

oo 1
Z 1 Z k_
(ld UOI/ UOI/ = H ld UO]/) HLZ < 5 fé
k=0 k=0
Also || < ¢ then ||U o v||r2 < ¢’, hence

5
1-46

IGd ~U o)™ (U 0 #)[|2 <

Now we still have a problem to prove the f € L?(L?) is actually smooth. We can
prove the operator is uniformly bounded w.r.t. the norm of the Banach space H®. Since

N H*(T?) = C>(T?), we say f is smooth.
s>0

Definition 2.5. The Sobolev space
H5(T?) = {f € L*(T?) : all partial derivatives of order < s are in L* (in the sense of distributions)}

and it is also {f € 3 vpme! ™) (1 4 n? + m?)suy,, € 12}

n,m
The final part is to prove that f(z,t)does not vanish.
It is enough to prove that isothermal coordinate theorem because in this case we have

seen that technical lemma implies strong technical lemma.

Proposition 2.7. The technical lemma implies isothermal coordinate theorem.
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Proof of the proposition. We can start with an almost complex structure defined on 0 €
U C C and determined by p : U — D(0,1). we can assume that p(0) = 0 (this means that
by a linear conjugacy j(0) = jo). We can assume also that |||, cs is small by rescaling
by a homotheties A < 1 and restricting the definition domain ((f(Az)" = A\f'(\z), by
choosing A small enough, the derivative can be small enough).

We extend smoothly a function y on R2/Z? and in order to have the same notations as
in the technical lemma we denote by v(z,t) = t-u. v(z,0) is the standard complex structure
and y(z,q) is our almost complex in a small neighborhood of 0 which was extended on
R?/72.

There is a solution f(z,t) of the Beltrami equation. In particular f(z,1)(dz+v(z,1)dz) =
f(z,1)(dz + pudz) is closed.

In order to prove isothermal coordinate theorem, it is enough to prove that f(0,1) # 0.
Because then, by continuity, in the neighborhood of 0, we have f(z,1) does not vanish.
Then f(x,1)(dz + pdz) = d¥ and ¥ is a diffeomorphism in the neighborhood of 0. In the
coordinate ¥, the complex structure given by u is the standard one.

Our f(z,t) is solution of f = (id —U o v)~}(U o ©)(f). Notice that for the initial value
(f(2,0) = 1), our solution is also f(z,t) = (1 — U ov)~!(1). Indeed, t = 0, we verify that
f(2,00=1=id(1) =1, using d(A"Y)(H) = —A"'HA™!, we have

0f(z,t)

o = (id=Uo v) o (Uow)o(id-Uowv) (1)

=(@{d-Uo 1/)_1 o (Uor)(f(z,t))

We prove that for [|u]lo cs small enough, (id—to U o u)~!(1) is closed to 1 in the
H3-topology. If two functions are close in H3-topology, they are closed in C°-topology,

hence f(z,t) does not vanish.
(1% L BY(T);
u— (id —to U o) (1).
O

O]

Definition 2.6 (Almost complex structures in higher dimension). Let X be a real manifold
and j € H(X,End(T X)) s.t. j2 = —id. This implies that for each x € X, T, X admits

a complex structure given by Yv € T, X, i-v = j(z) - v.
dim X

This implies dim X is even, because det(j?) = (—1)
TX is then a complex vector bundle, but not always a holomorphic vector bundle.

TX CTXc=TX ®C.

Here the local sections of TX ® C are X +4Y, where X, Y are local section of T'X.
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If dim X = 2n, then TX ® C has complex rank 2n. j extends as H(X,End(TX ®C)),
we still have j2 = —id. j(x) € End(T, X ® C) has 2 eigenvalues which are 4-i. Consider
ngl’o)X the eigenspace of the eigenvalue ¢ and ngo’l)X the the eigenspace of the eigenvalue
—i. Then TX @ C =T X ¢ TV X,

Example 2.2 (Standard example). Let X be a complex manifold, then xi is well-defined
in local holomorphic coordinates and gives a j € H°(X,End(TX)) which does not de-
pend on the local coordinates and it is defined intrinsically on X. In holomorphic local
coordinates
(z1 =1+ Y1, 20 =22+ Y2, -+, 2 = T, + 1Yn),

0 0 ., 0 0

‘7(07:1) = 371/1’ J 371/1) = 78790,1'
In this case, TX ® C = TOOX ¢ TOD X | where TMO X s the subspace where j acts by
the eigenvalue © and it is generated in those local coordinates by

(200 ;0 9 0y (990
833‘1 8y1 ’ a$2 63/27 B

0
77_27) (7775""7)'
0xy, OYn 0z1 0z 0zp,
TAO) X admits the structure of a holomorphic vector bundle isomorphic to the holomorphic
tangent bundle of X.
Moreover, TOVX is generated in local holomorphic coordinate

‘.2 99 0 9y 9y 29 9 1oy,
b e AR Rl T Y AT Y.

Question: If X is a real manifold of dim2n, and j € HY(X,End(TX)) s.t. joj =
—id. Does there exists local coordinates in X such that j reads in those coordinates as

0-1
10

"0 -1
-1 0

Remark 2.16. If such local coordinates do exists at each point of X, thus the transition
maps have a differential which commutes with xi, then the transition maps form a holo-
morphic atlas and X has the structure of a complex manifold. For which T X is the
holomorphic tangent bundle TX and TOVX = TAOX =TX.

More concretely, one wants to find in the neighborhood of any point p € X, an open
setpe U C X andp: U — p(U) C C™ such that dip o j =i x dip. In this case all (¢,U)
will form a holomorphic atlas of X. Such a j is called integrable almost complex

structure.
Integrability condition for almost complex structure:

Theorem 2.7 (Newlander-Nirenberg). Let X be a real manifold endowed with an almost

complex structure j. Then j is integrable if and only if

OV x, 7OV X c TOV X,

Since we have seen that TH0 X = TON) X | this condition is equivalent with [T(l’O)X, T(LO)X] -
T71,0) X
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This condition is satisfied if X is a complex manifold because 7%V

vector fields X + i - jX and

X is generated by

(X1 4 ij X1, Xo +ijXo] = - = (2[X1, Y1) + 45 (2[ X1, Y1)
(Exercise, since j is constant matrix, we have [jX,Y] = j[X,Y]).

Proof of Newlander-Nirenberg theorem in the case where j is real-analytic. j can be extended
as a j € HY(U,End(TU) = C*") such that j? = —id.

Now define E¢ as being the eigenspace of (—i) in C?", dim¢ E¢ = n.

Steps of the proof.

1. Show that [Ec, Ec] C Ec.

2. Prove Frobenius theorem saying that: if X is a complex manifold of dimension
n, and E C TX is a holomorphic sub-bundle of rank k, such that [E, E] C E, then for
any x € X, there exists an open neighborhood x € W C and a holomorphic submersion
VW — (W) c C"*st. E, = Kerdy(u), for any v € W. This means that locally E
coincide with the tangent space of the fibers of a fibration.

3. Apply Frobenius theorem of E¢ (of rank n) and find local submersion ¢ : U C
C?" — C™ and prove that 9|y : U — C" is a diffeomorphism and di o j = i o di).

O
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3 Sheaf theory

3.1 Dolbeault complex

M a complex manifold with TM @ C = T M @ TOD AL,
Dual decomposition 2;,@C = QGO 300D The forms in Q19 are locally > filzr, -0, zn)dzi,

where f; isa smooth function and forms in Q0!

are locally > gi(z1,- - , zn)dZ;, where g;
i
is a smooth function.

Ok, @C = @ QP4 where sections of QP4 are locally given by i = (i1,i2,--- ,ip),
p+q=k
j = (jbj?v o 7jn),
Z fijdzi A d?j,
Z‘?j
where f;; is a smooth function, dz; = dz;; A--- Adz;, and dz; = dzj A --- AN dzj,.
If a = Z fmdzz VAN dfj € QP4 then
i)j
do = Z(df”) Adz; N de e Qptla ©® Qp,q+1’
2
We will say that d = 9 4 0, where da € QP14 and da € QP4+,
In particular if f € Q%9 then df = 0f + 0f. Then f is holomorphic iff 0f = 0. We
say o € QMY is holomorphic iff do = 0.

Proposition 3.1. Properties of operators 0, 0:
i) O(aAB)=0a B+ (—1)%% A 0B.
i) O(a A B) = da A B+ (—1)%8%a A OB.
i) 000 =0,000=0,000+0d0d=0.

De Rham complex QF = {smooth forms of degree k}

0 batbord Lo do dod=o.

Dolbeault complex
0— Q004 0l %0029 . 9 qin g Hog=0.

For de Rham operator, we have Poincaré lemma: o € QF(U) with k > 1, da = 0, then
there is B € Q¥"1(V) s.t. dB = a for some V C U.

For Dolbeault operator, we have Poincaré lemma: o € Q%9(U) with ¢ > 1, da = 0,
then there is 8 € Q%971(V) s.t. 98 = « for some V C U.

Moreover, J-operator extends to the following situation. Let M be a complex manifold
and E — M a holomorphic vector bundle of rank n. We define QP4(E) = Q) ® E and

an operator
9 : QPI(E) — QPItH(E),
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s.t. for a holomorphic trivialization F|y = U x C™ with local sections (s1,---,s,) of
OP4 ® E, then we define
(Dsy,---,0s,) € QPITL(T),

This does not depend on the holomorphic trivialization and gives an operator 0 s.t. o0 =
0, and we have

0 QB & a0 (E) & ... 2 qon(E) 2o,

and the kernel of Q0°(E) 2, Q%1(E) are the holomorphic sections of E.

3.2 Sheaves and sheaf cohomology

This is a tool to deal with gluing problem: going from local data to global data.

Example 3.1. Let X be a Riemann surface and Py,--- , Pr,Q1,- -+ ,Q; points on X and
ni, - ,ny €N, my,---,my € N. Mittag-Leffler Question: Does there exists on X
meromorphic function which admits polos of order at most n; at P; and zeros of oder at

least m; at Q; 7
Example 3.2. Another question is that: Does vector bundles admit global sections?

Let X be a Riemann surface (but the theory could be developed in more general

context of topological spaces).

Definition 3.1. A pre-sheaf F of abelian groups over X (or vector spaces) is the fol-
lowing data:

For each open set U C X, we have a group (F(U)) (or a vector space) and for each
pair of open sets V.C U C X, we have a morphism (called the restriction morphism)
py « F(U) — F(V) with the properties: (i) F(@) =0, (ii)p% = id, (iii)pl} = p\} o pl;, for
any W CV CcUCX.

F(U) are called the sections of F over U. s € F(U) is called a section of F over U.
s € F(X) is called a global section.

Definition 3.2. A pre-sheaf F is a sheaf iff for any open set U C X and any covering
of U by open sets U;: U = |JU;, we have that the following is an exact sequence
i

U;nU;  U;NU;
. J iNYj
B'pUi ~Pu;

»[[Finwy).

i3

(Ui
0 = F(U) 2, 17w

Pre-sheaf definition: oo = 0; 1st axiom of sheaves: a injective; 2nd axiom of sheaves:

Ima D Ker 3.

Us

This means that if U = |JU, and s, € F(U,) s.t. pgzm Sa = pg;mUBSB, for any
i

a, B < 1s.t. UsNUg # @, then there exists a unique s € F(U) such that Vo € I,pg"s = Sq4.
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Definition 3.3. For P € X the fibers of F in P is Fp = lig]:(U). Fp is the space
Usp
of germs of sections at P: s € F(Uy) and s’ € F(Vy) with Uy, V, being open sets and

x € Up,NVy, we will say s ~ s’ if there is an open set x € W, C U, NV, and pl{}fs = pl{,zzs’.

The space of equivalence classes is Fp.

Example 3.3. X a Riemann surface and O the sheaf of holomorphic functions on X,

Fp = C[z] the space of convergent power series at 0.

Example 3.4. X a Riemann surface and P € X, we define the sky-scraper sheaf in the
following way:

C, PeU id, PeV

F(U) = . L= , Fo=0,ifQ#P, Fp=C.

0, P¢U 0, P¢V
Example 3.5. £ the sheaf of smooth functions. E(U) is the vector space of smooth func-
tions on U. E' the sheaf of smooth 1-forms. EF the sheaf of k-forms. EYC the sheaf of
smooth (1,0)-forms and E%' the sheaf of smooth (0,1)-forms.

Z' the sheaf of closed 1-forms and S the sheaf of holomorphic forms (type (1,0) and
closed). M the sheaf of meromorphic functions. E* the sheaf of non-vanishing smooth
functions. C* the sheaf of non-vanishing continuous functions. C the sheaf of locally
constant functions. R the sheaf of locally constant functions with real value. Z the sheaf

of locally constant functions with integer value.

Definition 3.4 (Morphisms of sheaves). X a Riemann surface. If F and G are sheaves
of abelian groups (or vector spaces) over X. A morphism from F to G is the data:

For any U C X an open set, there exists a group homomorphism from F(U) into
G(U), called fy with the compatibility condition: if V. C U the following diagram should
commute

FU) L7 g

pgl lpg :

Fv) L gv)

Remark 3.1. If U = J Ui, fu is completely determined by fu, if they are defined in
el
compatible way.

Example 3.6. Plenty examples of morphisms of sheaves:
d:&—=EY d: & — &2,
0:&—EW 9:601 5 gbl =¢g2,
Dolbeault operator 0 : £ — E%1, 9 : L0 — gl
A =2i00: £ — E2.
exp: 0 = 0% exp: & —E" exp:C — C*.

Inclusion morphisms: R — C, £ — O...
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Remark 3.2. If f : F — G is a morphism of sheaves, then f defines f, : Fp — Gz, V& €
X.

Definition 3.5. We say that the sequence of morphisms F — G i H is exact if Ve € X,

Fp 225 G, B—x> H. is an exact sequence.

The criteria for exactness is the following: Vax € X,Vg, € G, B9, = 0 < 3Jf, €
F, 9o = Qafa-

This is equivalent to: Vo € X, YU > x open set, Vg € G(U) and 3z €¢ W C U,
Bwyglw = 0 iff 3x € V.C W open set, 3f € F(V) s.t. ay(f) =g|v.

It is also equivalent to: V€ C X an open set, Vg € G(Q) with Sog = 0, with the

covering Q = |J U;, 3fi € F(V;) s.t. for any i, ay, fi = pgig.
el

Definition 3.6. We say that o : F — G is surjective if F — G — 0 is exact. §: G — H

is injective if 0 — G — H is exact.
Remark 3.3. 8 is injective <= Vx € X, B, is injective <= YU C X open set By is
injective.

However, « is surjective cannot imply ay is surjective! Here is a counter-example
d 1
0=-C—=E=2 =0

is exact due to Poincaré lemma but usually d(E) ;Cé ZY (surjectivity of morphism between

sheaf is a local property).
Proposition 3.2.
05F 565 H

18 exact,
a) YU C X open set, ay is injective (« identifies sections of F with sections in G).
b) YU C X open set, Vg € G(U), we have that Bug = 0 iff there exists f € F(U) s.t.
ayf = gy. This comes from, the exactness of the G sequence combined with second axiom
of sheaves.

In particular, one can find an exact sequence
0— F(X)— G(X) = H(X).
Consider now the short exact sequence
0F 55 H 0.

In particular, you have the previous conditions and YU C X open set in X, Vh € H(U),
Va € U, there is z € V, C U an open set and g, € G(V;) s.t. pf7h = By, (gz) (we can

find the pre-image in a smaller open set).
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Example 3.7 (Short exact sequences).
05C—=ES 7 5.
02 st b a2

05082600 0

00— W0 ell o

0—>C—>OE>Q—>O.

exp(2mi-)
5

0—=7Z—=& E* = 0.

exp(2mi-
(2mi-)

0—-7Z—0 O* = 0.

Obstructions to lift a global section in O* to O. For f = exp(2mig;) on U; and
f = exp(2wigs) on Uy, then we can show that g1 — go € Z. The obstruction is the first
cohomology group of Z. We define cohomology H'(F) in order to solve a lifting problem

of local sections.

Proposition 3.3. Given a short exact sequence
0—-F—>G—H—0,
for any U C X open set we have exact sequence
0—FWU)—GU)—HU),

but
0—-FU)—=GU)—HU)—O0,

s not exact.

Let us focus on the particular example
05C—e% 2t 0.

Consider w € Z1(X), we want to understand the obstruction to find ¢ € £(X) s.t. w = dy
on X.

By Poincaré lemma, for any x € X, there is V,, © x an open set in X such that there
is gy € E(Vy) such that wly, = dy,. Thus, there is (U;)ier an open cover of X s.t. there
is ¢; € E(U;) s.t. dyp; = w|y,. On U; NUj, we have d(¢; — ¢;) = 0, this implies that
there exists \j; € C(U; N Uj) s.t. ¢ — ¢; = Aij. Let us find a necessary condition on
(Aij) € C(U; nUj) which insures that w admits a global primitive.

Assume there is ¢ € £(X), w = dp. Then on U;, w = d(¢|y,) = dy; implies that
elu, — wi = A € C(U;). Similarly we have ¢|y, — ¢; = A; € C(Uj). Then on U; N Uj, we
have

Xij = @jluinu; — @iluno, ==X = ;.
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As we defined );j, they are not uniquely defined, but if ¢} is another primitive on U; and
¢’; is another primitive on Uy, d(p; — ¢;) = 0 suggests there is A} € C(U;) s.t. A} = ¢; — ¢
and there is \; € C(Uj) s.t. X = p; — ¢, and let X, = ¢i|v,nv; — #flviny; -

Alj = Aij — (A — A}) shows that (A;;) and (A};) will differ by A} — ). By construction,
on U; NU; NUg, Aij + N\jk + Ari = 0, we define with respect to % = |J Uj,

el

Hl(%,C) = {>\ij S (C(Uz N Uj) : )\ij + /\jk + A = (C}/{)\l — )\j T\ E (C(Ui),)\j € C(UJ)}

We defined a map

Hip(X)=172YX)/dE(X) — H (%, C).

This map is injective: A;; = A; — Aj, then the local primitives ¢; + A\; € £(U;) and
©;j + Aj € E(U;) agree on U; N Uj, hence they glue in a global smooth function ¢ s.t.
w = ¢, hence w =0 in Z1(X)/dE(X) = HJp(X).

In order to prove the surjectivity: consider \;; € C(U; N Uj), and using a partition of
unity, construct functions f; € £(U;) and f; € £(Uj) s.t. Ny = filvinu; — filuinu, (We
used the fact that H'(%,£) = 0). Then the local functions f; and f; are s.t. df; and df;
agree on U; N U, meaning that df; = w; € Z1(U;) define a global section w € Z1(X) s.t.
wly, = w; and the cocycle associated to w w.r.t. f; € £(U;) is Ayj.

Thus we’ve shown that the de Rham cohomology is topological invariant and H' (%, £)

does not depend on the choice of the open cover.
Exercise 3.1. H'(%,£) = 0.

Proof. Set % = {U, }icr and for an 1-cocycle (\;j) € E(U; NUj), we define X\; = > ppAig,
kel
where py, is the partition of unity subordinated to %/. Note that pgA;x is a smooth function,

hence in E(U;).

Ai —Aj = Zpk()\ik —\jk) = Zpk/\ij = \ij-
kel kel

We can also prove that Hl(X, 5071) = (0 and Hl(X,C) =0. O
Definition 3.7. Given a short exact sequence
0FSghH—o

Which is the condition h € H(X) to admit a pre-image, meaning 3g € G(X) s.t. fx(g) =
h?
This problem will be a gluing problem with sections in F and obstruction will be seen

as an element of a group H*(X,F). Consider X = |J U; an open cover such that Vi,
el
Elg,- c Q(UZ) s.t. BUi(gi) = ,Og](ih. On UZ N Uj, BUimUj (gi’UiﬂUj —gj|UmUj) = 0, then there is
fij € F(UiNUj) s.t. av,nu fiy = gilvinu; — gjluinu; -
We associated to g an element fi; € [, ; F(Ui N Uj) st fij + fir + fri = 0 on
UinNU; N Uy, with fi; = —fji, fii = 0 (they are called 1-cocycles). Cobords are those
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elements fij s.t. fi; = filuinu, — filuinu,, where fi € F(U;) and f; € F(U;). Now we
define
HY(% ,F) = 1-cocycles/ cobords.

We proved that there is an injective map from
H(X)/Bx(G(X)) = H' (%, F).

Moreover, one can get rid of %, by taking other cover ¥ : we will say that ¥ is “thiner”
than % if for any U € %, there isV € ¥ s.t. V C U.

Then we define H (X, F) = ling(QZ/,]:) meaning that (fij)i; € F(U; N U;) will be
0 in HY(X,F) if there is % an open cover s.t. HY(%,F) = 0. This will imply that
HY(¥,F) =0 for any open cover ¥ thiner than % .

Theorem 3.1. For any short exact sequence 0 — F — G — H — 0 of sheaves, there
exists a long exact sequence
0— F(X) =G(X) - H(X)
— HYX,F) - H'(X,G) - H' (X, H),
where § : H(X) — HY(X,F) was constructed previously (called cobord operator) and

HYX,F) - HYX,G) is fij € F(U;NU;j) = a(fij) € G(U; NU;), and the same for
HY(X,G) = HY(X,H).

Proposition 3.4 (Naturality). If there is a commutative diagram for short exact se-

quences:
0 F 24 NG, 0
JF \LG lH )
0 Fooa g gy 0

then we get a commutative diagram

a(X) B(X)

G(X) H(X) —0 s HY(X,F) —2 HY(X,G) —— H'(X,H)
G(X) JH(X) lF lc* lH

)
SO grxy ZY arx) 0 HY(X, F) —2 HY(X,G) — HV(X, W)

0 —— F(X)
F(X
0 —— F'(X)

Example 3.8.

05Coeh 7t o,

gives exact sequence
0 C(X)=C—&X)S 24(x) S HY(X,C) —» HY(X,€) =0.
Then ZY(X)/dE(X) = HY(X,C).

Corollary 3.1. 71(X) =0 hence H'(X,C) = 0.
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Example 3.9.

0 z £l oo 0
J/% C lC )
0 z ¢ P o 0

gives a long exact sequence

£(X) 2™ ex(x) S HY(X,7) ——s HY(X,E) =0

el =

C(X) 2 ex (x) 0 HY(X,Z) —— HY(X,C) =0

shows that
HY(X,Z) = C*(X)/ exp(2miC(X)) = £*(X)/ exp(2miE (X)).
Corollary 3.2. 71(X) =0 hence H'(X,Z) = 0.

Example 3.10. Dolbeault isomorphism.
0—>O—>8§>50’1—>0,
gives exact sequence
g(x) & 9 (x) % HY(X,0) = H'(X,&) = 0.

Then we get the Dolbeault isomorphism £%1(X)/0E(X) = HY(X,0).
HY(X,0)=Kerd: €& — &%, HY(X,0) = Coker 0.

We will prove Riemann-Roch theorem which shows the difference of the dimensions of
H(X,L) and H'(X, L) is a topological invariant (first result of index theory).

We will prove that dim H!(X, O) is finite and dim H'(X, O) = g is topological invariant
(while dim H'(X,C) = 2g).

Corollary 3.3. Any Riemann surface of genus g admits a nonconstant meromorphic

function with a unique pole of order at most g + 1.

Proof.
020 -ME M/O =0,

where p is a projection and M /O is the sheaf of “polar parts”. Sections of M /O are local
meromorphic functions and we decide f € M(U) and g € M(V') define the same section
of ( M/O)Y(UNV) if thereist € O(UNV) s.t. (f —g)|luny =t

(M/O)(X) are polar parts: such a global section it is a data given by Py, -+, P, € X

and prescribed polar parts: in each P; we consider in local coordinate z; s.t. z;(P;) = 0,

aq  Qd-1 ay
o A s N
Z; . z-
7 1 K3
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it is a polynomial of degree d in Z% with no constant term. Note that dim(M/O)(X) = occ.

The short exact sequence gives
M(X) 25 (M)0)(X) 25 HY(X, 0).

Since dim H'(X, O) is finite, then dim Ker § is infinite hence dim Im py is infinite.

Let us consider a given point P € X and the vector space in (M/O)(X) generated by

{1, - 1}, where z is a local coordinate at P € X s.t. z(P) = 0. This implies there are
g+1
Ag+1;- A1 € Csit Y % € Kerd = Impx. Thus there is f € M(X), with a unique
i=1
g+1 N
pole at P and polar parts at P being ) = ]
i=1

Corollary 3.4. If X is a compact Riemann surface of genus g = 0, then X is biholomor-
phic to PL.

Proof. f € M(X) non constant and have a unique pole P € X of order 1 (at most 1 and
non constant). Such a map is a holomorphic map f : X — P! of degree 1 (since co has a

unique pre-image), hence f is an isomorphism (f’ does not vanish). O

Corollary 3.5. If g = 1, there exists a meromorphic f € M(X) with a unique pole 2 (in
fact < 2 but the order being 1 is the last case).

Weierstrass p-function (exercise).

Remark 3.4. If we have a non-constant holomorphic map f : X — P!, it is surjective

due to closeness and openness of f.
If we admit dim H'(X, £) is finite then we have the following general theorem.

Theorem 3.2. Any holomorphic line bundle £ over a Riemann surface admits infinitely
many meromorphic sections. More precisely, for any P € X, there exists a meromorphic
section s of L such that s admits a unique pole at P € X with order at least 1 and at most
dim HY(X, L) + 1.

Proof.
0—= 0= Mg 5 Mp/Or — 0,

where O, is the sheaf of local holomorphic sections of £ and M, is the sheaf of local

meromorphic sections of £. The fibers at z € X of M /O is the quotient of
{(U, s) : U open neighborhood of x in X,s € M,(U)}/ ~,

where (U, s) ~ (V,t) when ¢t — s is a holomorphic section on W Cc UNV.
(M /Or)(X) is the space of polar parts of sections of L. Such a polar part at P € X
is given in a local coordinate z such that z(P) = 0 and with respect to a local holomorphic

section t of £ by the following data

Z.)t, a; € C.

7

S

Q.

i=1

I\
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We choose d = dim H' (X, £) + 1, then the exact sequence
Me(X) 25 (Me/0£)(X) 25 HY (X, 0p),

shows that there exists a; € C such that the corresponding polar part is in Kerdyxy =

Impx. ]

An alternative proof using the Dolbeault operator. Recall 9y : C®(U,L) — C®(U,L ®
E%1). For any U C X, locally we can define d,(ft) as being O(f)t, where f is a lo-
cal smooth section and ¢ a holomorphic trivial of £. If s is another holomorphic trivial
and s = ht where h is a holomorphic function, then 0. (fs) = d.(fht) = htd(f) = I(f)s.
Thus O, is well-defined. B

050, =& 25 £oe% 50

gives a long exact sequence
£0(X) 25 (69 @ £)(X) S HI (X, 00)(= H'(X, L)).
Then we have the Dolbeault isomorphism
(% @ L£)(X)/0LEr(X) = HY(X, L).

Denote by d = dim H'(X, O,) + 1 and choose a point P € X with a local coordinate
z such that z(P) = 0, and ¢ a local holomorphic trivialization of £ at P.

Consider for any ¢ € {1,---,d}, the local section p% with p a bump function. Then
pL € Ec(X\{P}) and 9. (pLt) = d(p)Lt on X \ {P} but d(p) = 0 in the neighborhood
of P, hence d(pL4t) € (L ® E%)(X).

d  _ _
Thus there are A1, -+, Ay € C such that > )\i(ap)ﬁ =0in (%' ® £)(X)/0rE0(X).

=1
_ d _ d
Thus there is 8 € E£(X) s.t. I8 =D, )\i(ap)ﬁ, hence denote s = > )\ipﬁ we have s — f3
: ~

=1 1=
is holomorphic. Thus s is meromorphic section of £ with prescribed polar part. ]

3.3 Line bundles and divisors
X a compact Riemann surface.

Definition 3.8. A divisor on X is an element of the free abelian group Div(X) generated

by points in X. Such an element is given by

k
D=> "n;-P, P,eXncl.
=1

k
We define deg D = > n;. If for any 1 <i <k, we have n; € N*, we say D is an effective
i=1
divisor. mp,(D) =n; € Z and mg(D) =0 if Q ¢ {Py,--- , P}.

We say Dy > Dy iff D1 — Dy > 0, that is mp(D1 — D2) > 0 for any P € X (D; — Do

is an effective divisor).
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For any f € M(X), we associated the divisor

=0, P is not a zero or a pole;

div(f) = Z vp(f)- P, vp(f) =< =m; € N, P is a zero of order my;
Pex
=-n; € Z\N, P is a pole of order n;.

For f,g € M(X), we have
vp(fg) =vp(f) +vp(g) = div(fg) = div(f) + div(g).

vp(f~1) = —up(f) = div(f ') = — div(f).
div(f) is effective iff f is holomorphic.

Definition 3.9. We do the same with (L, f), where L is a holomorphic line bundle over

X and f € Mg(X), div(f) = > vp(f) is well-defined divisor (this does not depend upon
PeX
the local trivialization).

We have f~1 € Mg«(X) and f € Mg, (X) and g € Mg, (X) give that f - g €
ML1®52 (X)

We will say that (L1,s) and (L2,t) are equivalent w.r.t. L1, Lo holomorphic line bun-
dles, s € Mg, (X) and t € Mg,(X), if there exists an isomorphism

w: L1 — Lo, such that o(s) =t.

Proposition 3.5. Two pairs (L1,s) and (La,t) which are equivalent, define the same

divisor div(s) = div(t) and the map
(L1,s)/ ~— Div(X),
is a bijection which is a group homomorphism.

Proof. (L£1,8) ~ (L2,t) iff t-s7! is a holomorphic section of L} ® Ly which does not vanish.
Then div(t-s~1) = 0 hence div(t) = div(s).

The above shows that the map is injective. Let us prove now the surjectivity. Take
D= i n; - P;, consider % = (Up,--- ,Uy) such that U; and U; are disjoint for i,j > 0,
and (}le X\{P1, - ,P}. U = D; is a small disk centered at P; with local coordinate
z; with z;(P) = 0.

Consider the transition functions ¢; = ¢p,u, = 2;"* holomorphic on z; # 0. There is no
cocycle condition since U; N U; N U; = @. The cocycle defines a holomorphic line bundle

and by construction the section = 1 on Up, is meromorphic section of the line bundle with
k
zeros and poles at P; s.t. the associated divisor is D = Y n; - P;.
i=1
O
Definition 3.10. The pre-image of the divisor D € Div(X) is a given holomorphic line
bundle called Op which comes with a meromorphic section 1p such that div(lp) = D.

For example O is associated to D = 0.

42



Moreover if two divisor D and D’ define the same holomorphic line bundle Op this
implies that there are two meromorphic sections s; and sy of Op such that div(sy) = D
and div(sg) = D’. But there is f € M(X) s.t. fs1 = s2 and div(fs;) = div(f) 4 div(s1)
hence D' = div(f) + D. Thus, there is a bijection map

Holomorphic line bundles — Divisors/ ~ .

~ is called linear equivalent, D = D’ iff thereis f € M(X) s.t. D = D'+div(f) = D'+(f).
k
Denote by deg(D) = > n;, then D = D’ 4 (f) gives that deg(D) = deg(D’) because
i=1
deg(f) = 0.

Exercise 3.2. A meromorphic function on a compact Riemann surface admits as many

zeros as poles.

Proof. A non-constant meromorphic function f can be seen as f : X — P! and it is
surjective. We want to show the number of f~1(0) equals the number of f~!(co) (WAIT).
Another proof is given by considering fTI, please check Proposition 3.8.

A more general result is Corollary 3.7. O

Mittag-Leffler Problem
H°(X,0p) ={f € M(X): f- 2" is holomorphic}.

Then vp,(f) > —n;, i.e. vp,(f)+n; >0,
HO(X,0p) = {f € M(X) : div(f) > —D}.

Op is trivial iff there is s € H(X, Op) non-vanishing, that is s € M(X) with div(s) =
—D,ie. div(s™!) = D.

Theorem 3.3 (Mittag-Leffler Problem). Let us consider Pi,--- , Py, Q1, -+ ,Q; € X and
m; € N, n; € N, we are trying to find f € M(X) such that f admits poles at P; of order
at most m; and zeros at Q; of order at least n;.

That is vp,(f) = —m; and vq,(f) > ny, that is div(f) > —D, where D = Y m;P; —
0,
n;Q;. That is f € H'(X,Op).

We have seen in Theorem 3.2 that for g = 0, there is s € H*(X,Op) \ H*(X, O) for
any Pe€ X and D = —P.

Notice that the divisor associated to a holomorphic section is effective.
Proposition 3.6. The degree of a line bundle is a topological invariant.

We have defined deg(D) = ) n;, where D = > n,;P; and we define deg(Op) = deg(D)
(this does not depend on the section because if £ = Op and £ = Ops we have seen that
there is f € M(X) s.t. D = D" + (f), hence deg(D) = deg(D’) since deg(f) = 0).
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Topological definition of degree of complex line bundle

The degree can be defined for any topological complex line bundle over a Riemann surface.
Take £ a complex line bundle and consider a continuous section s with a finite number of
isolated zeros Pi,--- , P, € X (s will trivialize the complex bundle on X \ {Py, -, P;}).

In the neighborhood of each P; € X, consider the local coordinate z; s.t. z;(P;) =0
and the bundle is trivialized over {|z;|] < 1}. For € > 0 small enough, s does not vanish

on |z;| = € and we consider the map
8||z|=e ¢ |2i] = € = st 2y o > st

and define indp,(s) = deg(5p,). We define

k
deg(L) = deg(s) = Zindpi(s),

i=1

it is a topological invariant.
Exercise 3.3. deg(L) does not depend on the section s.

Proof. If sy and s are two sections of £, consider s; = (1 — t)sg + ts1, t € [0,1]. If we
can show that deg(s;) is continuous on ¢, then since it’s in a discrete group Z, we have
deg(so) = deg(s1). 0

Exercise 3.4. deg(Op) = deg(D). Indication: consider the meromorphic section 1p and
deg(s) = D.

associate the coordinates section s = HﬁfDDHQ,

Exercise 3.5. deg(L) = 0 iff L is topologicall trivial.

Proposition 3.7. Let L be a holomorphic line bundle with deg(L) < 0, then L does not

admit non trivial holomorphic sections.

Proof. If s € H%(X, L) is a holomorphic section, deg(L) = deg(s) > 0. O
Proposition 3.8. Let X be a compact Riemann surface and w € QL ..(X) a meromorphic
1-form on X (w is a meromorphic section of T*X ). Then ) Respw = 0.

PeX

Definition 3.11. T*X = KX is called the canonical bundle and div(w) is usually

called a canonical divisor: its class is denoted by K, meaning T*X = Ok.

mer

Corollary 3.6. For any f € M(X), % € QL _.(X) and

0, P is not a zero nor a pole;

Resp(—) = { n € N*, P is a zero of order n;

f
—m € Z\N, P is a pole of order m.

Then div(f) is of degree zero.
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Proof of the proposition. Resp(w) is well-defined since if P is a pole of w, consider z a

local coordinate at P s.t. z(P) = 0 and consider
aq | Ad-1 ai
— (e 4y ezt 4 d
w [Zd+zd—1+ —i—Z—i-f(z)] 2,

with a; € C and f € O(U). The point is that a; does not depend on the local coordinate
z and is ﬁ f|zi|:€ w, for € small enough, and by definition a; = Resp w.
k

S hespw=> [ woso [ do=.

17 |zil=¢ X\ U {lzl<e}

pPeX i=

O]

Corollary 3.7. For f € M(X), w = % gives the number of poles is the number of

f'({a}), for any a € C.
Hence for any a € C, #f~1({a}) is the same, now we define it as deg(f).

3.4 Riemann-Roch theorem

Reminder: all holomorphic line bundles over a Riemann surface X admit meromorphic
sections. If £ is a holomorphic line bundle and s is a meromorphic sections, we call
D =div(s) and £ = Op. If s’ = fs is another meromorphic section of £ with f € M(X)
(because s" - s71 is a section of L ® L* = X x C trivial). div(s") = div(f) + div(s), hence
D' :=div(s') = div(s) + (f) = D + (f), which we say D’ ~ D are linear equivalent and
(f) is a principal divisor.

Op, ® Op, = Op,+p, because if 1p, is a meromorphic section of Op, such that
div(1p,) = D; and 1p, is a meromorphic section of Op, such that div(1p,) = D3, then
1p, -1p, is a meromorphic section of Op, ® Op, and div(1p, -1p,) = div(1lp,)+div(lp,) =
Dy + Ds.

One classical notation: Og ® Op = Qp.
Qp(U) = {w meromorphic sections of Q(U) such that div(w) > —D}.
(O @ Op)(U) = Ok (U) @ Op(U) =QU) @ OU).

Theorem 3.4 (Riemann-Roch theorem). Let D be any divisor on a compact Riemann

surface of genus g, then
dim H°(X,Op) — dim HY(X,0p) = 1 — g + deg(D).
It is equivalent to say that for any holomorphic line bundle L,
dim H°(X,0p) —dim HY(X,0r) = 1 — g + deg(L).
Corollary 3.8 (Riemann). dim¢c H(X,Op) > 1 — g + deg(D).
We shall admit the following theorem in advance.

Theorem 3.5 (Serre duality). H'(X,0p)* = H*(X,0k_p) = H*(X,Q_p).
Then dime H (X, Op) = dimc H*(X,Q_p).
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Some interpretation of Riemann-Roch theorem
For D = niP; 4+ - - - + ni P, an effective divisor, n; € N*,
Q_p={sc H°(X,Q) : s vanishes at each P; of order > n;}.
Riemann-Roch will state:
dim H*(X,0p) — dim H*(X,Q_p) = 1 — g + deg(D).

This implies
dim H°(X,0p) =1 — (g — dim H*(X,Q_p)) + deg(D).

While
HY(X,0p) = {f € M(X) : div(f) = ~D},

that is, f admits poles at P; of order at most n;.

There is a natural map the polar part map
M(X)D HYX,0p) 5 C" @ C™2 @ - @ C™* = CdeaD),

The map at P; is given by the polar part

Qj 4.1
fro g
4

i
where z; is a local coordinate at P; with z;(P;) =0 and a;; € C.

We want to understand the image of this map. Also notice that the polar part map is
well-defined and injective on H%(X, Op)/O(X), meaning that two meromorphic functions
which have the same polar part differ by a holomorphic function on X, hence by a constant.

Recall that the residue theorem, for any f € M(X), any w € Q(X) (holomorphic

1-form), we have )  Res;(fw) = 0. For a polar part there is an obstruction to be lifted
zeX

to a global defined f € M(X) which is, Vw € Q(X) denoted by w(z;) = > bijzgdzi the
=0

local expansion in power series at each P;. Since Y, Res,(fw) = 0, we have
reX

k ng
D2 b1 =0.
i=1 j=1
Example 3.11. D = P (hence k = 1 and ny = 1), then the condition on the polar part

at P: 2 is Res(2w) =0, i.e. X\-by =0, where by is such that w(z) = (bo + b1z + - )dz.

Moreover this implies that all forms w € Q_p(X) give trivial condition because they
vanish at order n; at each P, ie. b;; = 0,Vj <mn; — 1.
The image of polar part map is the space realizing the non trivial conditions. Therefore,

the image of the polar part map is of dimension
deg(D) — [dime H°(X, Q) — dim H(X,Q_p)] = deg(D) — g + dim H'(X, Op).
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Here
dim H(X,Q) = dim H°(X, Ox) = dim H' (X, Ok _f) = dim H'(X,0) = 0.

Since the polar part map is injective on H°(X, Op)/C, hence the image is of dimension
dimc H°(X,Op) — 1. Thus

dime H(X,Op) — dim¢ H' (X,0p) = 1 — g + deg(D).
Proof of Riemann-Roch theorem
Proof of Riemann-Roch theorem. Notice that for D = 0, we have
dim H°(X,0) — dim H'(X,0) =1 — g +0.

We will prove now that Riemann-Roch is true for D if and only if Riemann-Roch is
true for D 4+ P for any P € X.
We need to prove that

dim H°(X, Op) — dim HY(X,Op) = dim H*(X,Op,p) — dim H (X,Opyp) — 1.
There is a short exact sequence
0—>OD—>OD+]D—>SP—>0,

where Sp is the sky scraper sheaf defined in Example 3.4.

First case, d € N* is the coefficient of P in D + P and then the coefficient of P in D
isd—1e€N

f € Opyp(U) with P € U and consider at a local coordinate z at P the polar part of f
as being %t +- -+ %¢. Then f € Op(U) if and only if ag = 0. Define Op, p(U) — Sp(U),
f—aq.

By construction we have a short exact sequence. This gives a long exact sequence:
0— H°X,0p) = H'(X,0p.p) - H (X,Sp) - H'(X,0p) = H'(X,0p,p) — H'(X,Sp) — 0.
This gives the alternate sum of dimensions

0 = dim H°(X,Op) — dim H*(X, Opp) 4+ dim H(X, Sp)
—dimHY(X,0p) + dim H(X, Op,p) — dim H' (X, Sp).

Since dim H°(X,Sp) = 1 and dim H!(X,Sp) = 0, we have
0 = dim H°(X,O0p) — dim H*(X,Op+p) + 1 —dim H' (X, Op) + dim H' (X, Op. p).
Similar proof works for negative coefficient case of D, and works for D — P. O

Corollary 3.9. deg(K) =2g — 2.
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Proof. Consider D = K, HY(X,0p) = H*(X, Ok) = Q(X).
dim Q(X) = dim H°(X, Q) = dim H(X,0) = g.

dim H' (X, Ok) = dim H°(X, Ok _ ) = dim H*(X,0) = 1.

Then
g—1=1—-g+ deg(K).

Then deg K = 2g — 2. O
Corollary 3.10. If deg(D) > 2g — 2, then
dim H(X,0) =1 — g + deg(D), and dim H'(X,0p) = 0.

Proof. (H'(X,0p))* =2 H%(X,0Ok_p) and deg(K — D) = 29 — 2 — deg(D) < 0 hence
H%(X,0k_p) =0. O

Example 3.12. Another particular case deg(D) = 0.
Then H°(X,Op) either admits no nontrivial section or if there is, this section does

not vanish. Then we have two cases

dim H°(X,0p) =0 dim H°(X,0p) =1
dim HY(X,0p) =g —1 dim HY(X,0p) =g

Theorem 3.6 (Riemann-Hurwitz theorem). X and Y are Riemann surfaces of genus
9(X) and g(Y') respectively. Let f: X — Y be a holomorphic non-constant map, f is an
open map and since X is compact f will be surjective, with finite fiber and f is a ramified
cover.

For any x € X, there is holomorphic chart coordinate in x and a holomorphic chart
centered at f(x) such that f reads: z — 2%,d > 1. d € N does not depend on local
coordinates and it is called the ramification degree at x and denoted by I(x).

The set R = {x € X :l(z) > 1} is called the ramification set and R is a finite set.
Moreover X \ f~Y(f(R)) = Y \ f(R) is a cover. The degree of the cover is called deg(f)
(the number of sheets), deg(f) = >, U(z) foranyy €Y \ f(R).

z€f~1(y)
(i) x(X) =2 —29(X) = deg(f)(x(Yy)) - g}){(l(:ﬂ) - 1).
(i) 29(X) — 2 = deg(f)(29(Y) — 2) + ;{(l(w) —1).

Example 3.13. p:C/A - P, 0=2-(0-2)+4-1.

Corollary 3.11. If g(Y) > g(X), then there is no non-constant holomorphic map f :
X =Y.

Corollary 3.12. > (i(z) — 1) € 2Z.
zeX
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Proof of Riemann-Hurwitz theorem. Let us take w a meromorphic 1-form on Y. Then

div(w) = Y. ordp(w) - P is the canonical divisor of degree 2¢(Y") — 2.
PeY
Now consider f*w as a meromorphic section of Kx,

ord, (fw) = () ord sy w + (I(x) — 1),

In order to prove this formula one look in local coordinates z i> 2% to the form w = w"dw,
9 = (2Hd(2%) = dzIntd1gz,

hence ord,(f*w) = dn +d —1 = I(x) ords,) w + (I(x) — 1).

29(X) — 2 = deg(Kx)

= deg(div(f*w))
= Z ord, (f*w)
zeX
= l@)-ordyyw+ Y (1) 1)
zeX zeX
= Z( Z [(z))ordy w + Z(l(x) —1)
yeY zef-1(y) z€X
= deg(f) Z ord, w + Z(l(aﬁ) - 1)
yey reX
= deg(f)(29(Y) —2) + > _(I(z) - 1).

zeX

Remark 3.5. How to find a triangulation of a compact Riemann surface Y ¢
One can get a triangulation of Y by using f : Y : PY(C) a holomorphic map (f €
M)\ O(Y) do exist) and then pull-back a triangulation of S* with vertices at f(R)

where R is the ramification points.

Topological proof of Riemann-Hurwitz theorem. Now take a triangulation of Y and add
vertices at points in f(R), then pull back through f this triangulation on a triangulation

on X, then

2 —2¢g(X) = # vertices in X — # edges in X + # faces in X
= (deg(f) - (# vertices in ) — Z(l(m) - 1))

zeX
— (deg(f))(# edges in X) + (deg(f))(# faces in X)

= deg()(2 — 29(Y)) — 3 (1) — 1).

zeX

O]

Theorem 3.7 (Topological invariance of “g”). Let X be a compact Riemann surface
such that dim H*(X, O) = dim H°(X,Q) = g, Then dim H*(X,C) = 2g.
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Proof. We will construct a short exact sequence:
0— QX)) ZY(X)/dE(X) = HY(X,C) L EVN(X)/0E(X) = HY(X,0) — 0.
Then from dim Q(X) = dim H*(X, Q) = g, we have dim H!(X,C) = 2g.
QX)) = ZY4X) = Z1(X)/dE(X),
then « is the composition of the inclusion with the quotient map.
B:ZYX)— % (X), n~— b,

3 descends on 3 : Z'(X)/dE(X) — E%1(X)/PE(X), because fod = 9.

Let us prove that this gives an exact sequence.

a injective: let w € Q(X), a(w) = 0. Then there exists f € £(X) s.t. w =df. But w
is of type (1,0), i.e. df =0 hence f € O(X) hence constant, then w = df = 0.

Ima C Ker 3: For any w € Q(X), a(w) is a holomorphic 1 form, hence its (0,1) part
is 0, which implies a(w) € Ker 8.

Ker f C Ima: Take u € Z'(X) such that u + d€(X) is in the kernel of 3, i.e. f(u +
d€(X)) =0, i.e. fu = Ov for some v € £(X). Then u — dv is holomorphic because it is
closed and of type (1,0), hence u + d(£(X)) € a(R).

For § is surjective we need

Lemma 3.1 (Weyl lemma). For any u € £%1(X), there exits v € £(X) such that u— v

s closed.

Proof of the lemma. Use the fact that 90 : £(X) — £2(X) has an image which is given
by o € £%(X) such that [, o = 0.

With this we have that du = 99v, v € £(X) (since [y du = 0 by stokes). This implies
d(u — 0v) = du — ddv = 0. O

This proves the surjectivity of 3. For any u € E%L(X) we need to show that there
exists u € Z'(X) and a function v € £(X) such that u = B(u) + Jv.
Weyl lemma insures that @ can be chosen of type (0, 1), closed and anti-holomorphic.

Therefor B’ﬁ(x) is surjective. O

Proposition 3.9. Let X be a compact Riemann surface and the maps defined as

QX)) —>— HY(X,0) Q(X) —*— HY(X,C)
ZHX) —— ZYX)/dE(X). ZHX) —— ZYX)/dE(X).

We have that o and & are injective and

HY(X,C) = a(QX)) ® a(Q(X)).
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Proof. We already proved that « is injective (same proof implies @ is injective). dim a(Q2(X)) =
dim@(Q(X)) = gand we proved that dim H'(X,C) = 2g.

We need to prove that a(Q(X)) Na(Q(X)) = {0}. If w € Q(X) and &’ € Q(X) such
that a(w) = @(w’) then there is f € £(X) s.t. w —w' = df. Then w = df and W’ = —3f.
f is harmonic since 99f = Ow = 0 since w is holomorphic. Then f constant and w = w’
hence = 0. O

Remark 3.6. Cohomology type.

3.5 Abel theorem

Theorem 3.8. For any compact Riemann surface of genus g > 1 and for any P € X,
there is w € HY(X, Q) such that w(P) # 0.

Proof. Assume that all w € Q(X) such that w(P) = 0 for some P € X. Then H*(X,Q_p) =
HY(X,0 ® O(-P)) — H"(X,Q) is a group isomorphism.
Applying Riemann-Roch theorem for both O and Ox ® O_p implies that

dim H' (X, O ® O_p) = dim H' (X, O) + 1.

By Serre duality
dim H' (X, Ok) = dim H(X,0) = 1.

Then dim H' (X, Ok ® O_p) = 2, hence again by Serre duality,
dim H(X, Op) = 2.

Thus there is a meromorphic function f € M(X) having a pole of order at most 1 at point
P.
This implies there is a well-defined map X — P!, a contradiction to g = 1. O

Remark 3.7. This implies there is a well-defined map
X Pl 2o w(z): - twg ()],

where (w1, ,wyq) is a basis of Q(X).
You can associate to any x € X the hyperplane in Q(X) of those w € Q(X) such that
w(z) = 0.

k
For X compact Riemann surface and a divisor Y  n; - P;, for n; € Z and P; € X,
i=1
k
which is now called 0-chains. Then we introduce the 1-chains ¢ = > n;¢; with n; € Z and
i=1
¢; 1 [0,1] — X. One can define for any w € £1(X),

k
Jo=Yn [ w
c i=1 (&5

1

o1



The set of 1-chains C1(X) is an abelian group. There is a border map:

k k
9:C1(X) = Co(X) =Div(X),c =Y nici>c= > _n(ci(1) — ¢i(0)).
=1 =1

If ¢ is a closed curve, then dc = 0.

If ¢ € C1(X), then deg(dc) = 0. Then the image of C(X) is in Divy(X), the group of
divisors of degree 0 on X. Moreover, 9(C1(X)) = Divo(X), since for any D € Divy(X),
one can consider pairs of points (P}, Q);) such that D = > P,—>" @, then let ¢; be a curve
with ¢;(1) = P; and ¢;(0) = Q;.

We define 1-cycles

Z1(X) = Ker(C1(X) & Divo(X)).

We say ¢, ¢’ € Z1(X) are homologous if Yw € Z'(X) a closed smooth 1-form, [[w = [, w.
Now we define
H(X,Z) = Z1\(X)/ ~ .

Remark 3.8. For any v € H1(X,Z) and any w € Z*(X), fww is well-defined.

Remark 3.9. For any closed homotopic curves ¢ and ca, fq wy = ch w, Yw € ZYX).

O:/ dw:/ w/ w.
¢x[0,1] c1 co

Thus i is well-defined in the following diagram and i is always surjective,

Since we have

/

(X)) ——— H{(X,7Z)
m1(X)/[m1(X), 71 (X)]

Usually i is not injective since m1(X) is not abelian in general. Moreover, in this case, we
have m1(X)/[m1(X), m1(X)] = H1(X,Z) (but we will not prove it).

Theorem 3.9 (Jacobian of a Riemann surface). Integration over 1-cycles determinus
[ smxz) - @)
such that the image is a lattice called the period lattice.
(Q(X))*/Hy(X, Z) = (HO(X,9))" /Hy(X, Z) = T /A = Jac(X),
is called the jacobian of X (topologically Jac(X) = (S')%9).

Example 3.14. X = C/Z @& 7Z an elliptic curve. Q(X) = Cdz, the period lattice is
7Z® 7L, and Jac(X) = X.

Remark 3.10. Integration map associated to any [y] € Hi1(X,Z) the 1-form on Q(X) is
the integration over =, f7 € (UX))* such that w — fvw for any w € Q(X).
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Remark 3.11. Assume f,yw = 0 for any v € H(X,Z), this implies that w admits a

primitive which is a holomorphic function, hence constant hence w = 0.

Remark 3.12. Hy(X,Z) < Hi(X,C) (is not injective in general). H}n(X,C) = Q(X)®
QX).

The image of H1(X,Z) in Hi(X,C) is discrete hence it’s discrete in (Q(X))*.

Assume that [ sends Hi(X,Z) in a real hyperplane in (Q(X))*. This implies there is
w € QX), such that Re(f,y w) =0 for any v € Hi(X,Z). Then Re(f,7 w) is a well defined
function on X, then fv Rew is a well defined function on X.

Consider the universal cover of X and since f7 Rew = 0, there is a real harmonic
primitive f on X of Rew such that fv Rew = f. Moreover, f is well-defined on X, hence
by maximal principle, f is constant, hence Rew = 0.

Imw = JRew hence w = 0.

Another interpretation is take (w1, ,wy) a torus of Q(X), then

H(X,Z)— C9, 7b—>(/w1,--- ,/wg).
¥ ¥

The image of this map is the period lattice Jac(X) = C9/Period Lattice.
There is a canonical embedding X — Jac(X). Fix a basis point O € X, consider the
map

PeX - (w— w) € (QX))".

YoP

This is not well-defined, since if we choose two curves connecting O and P, we have

/w—/w—/ we H(X,Z),
gl v YU(=")

hence fvop € (Q(X))*/Period Lattice = Jac(X).
Theorem 3.10 (Abel-Jacobi theorem). The space of holomorphic line bundles of de-
gree 0 over X is canonically isomorphic to Jac(X) through the map

k

Pico(X) := Divg(X)/ ~— Jac(X), D= Z(B - Qi) (w— /w) € (QX))",
i=1 ¢

where ¢ is a 1-chain such that Oc = D.

Remark 3.13. The map is well-defined because if

/w—/w—/ w € Periods.
c1 () c1U(—c2)

If D= D'+ (f), the map is well defined because we will see that Abel-Jacobi map send
(f) to 0.
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Proof of Abel-Jacobi theorem.

Step 1. For f € M(X), f : X — P! we will prove ®(div(f)) = 0. Set R C X
the ramified set of f: R = {x € X : f/(x) = 0}, i.e. l(z) > 0. f defines a cover
from X \ f71(f(R)) — P!\ f(R). For any y € Y = P!\ R, there are open sets V 3 y
and U; C X \ f71(f(R)), such that f~1(V) = Lnj U; and foralli, fly, : Ui — V is a
biholomorphism. Let us denote by ¢; = (f |Ui)_fiatnd Vw € Q(X) define w; = ¢fw|y, €
Q(V), define tr(w) = i w; € QV).

We define tr(w) EZS_ZEIP’I \ f(R)). Since w € Q(X), w is bounded in the neighborhood of
points in f~1(f(R)), w = h(z)dz with h bounded. This implies that in the neighborhood
of points P € f(R), tr(w) is bounded: [(z)dz, | bounded in the neighborhood of P in
P!\ f(R). By Riemann removing singularity theorem, tr(w) extends holomorphically to
a section of Q(P') = {0} hence tr(w) = 0.

Let v be a curve in P! such that v(0) = 0 and v(1) = co. Denote f~1(y) =c; +--- +
¢n =: ¢ such that 0(c) = (f). Then

/sz/vtrw):o,
hence ®(div(f)) = 0.

Step 2, Abel theorem. ®(0) = 0 implies D = div(f), for some f € M(X).
Step 3, Jacobi inversion theorem. ® is surjective.
Idea of the proof. Fix (Q1,---,Qq) € X X --- x X g-fold. Define a map

F:X x---xX — Jac(X), (Pl,"-,Pg)H(w%/w),

where ¢ is a 1-chain in X such that dc = Py +--- 4+ P, — (Q1 + - -- + Q4). By the same

reason, it does not depend on the choice of c.

dF :TX x - - xTX - (X)) = dE)* : QX)) > T"X x--- xT*X,
and (dF)*(w) = (w(P1), -, w(Fy)).
Exercise 3.6. Fix points Py,--- , Py, w(P1) =+ =w(Py) =0, we have w = 0.

Then (dF)* is an injection.

Recall that for X,Y compact connected complex manifolds of same dimension, f :
X — Y holomorphic is surjective iff there exists z € X such that df (x) is invertible.

Because in this case, by local inverse theorem there exists (U, z) and (V, f(x)) such
that f|y : U — V is a biholomorphism. This implies that V' contains at least one regular

value y and for this value # f~!(y) > 1, hence deg f > 1, hence surjective and for regular
values, deg f = #f~(y). O

Example 3.15. There is a particular case of this when X is of genus 1. Hence dim Q(X) =
1 and take w € Q(X) \ {0}. Fiz P € X, consider X — Jac(X) = C/A, Q — [ w, where
c¢(0) =P and ¢(1) = Q.

54



®: X — C/A, and d® = w. Assume by contradiction ® is not injective, then by Abel
theorem, there is f € M(X), (f) = (P) — (Q), hence f admits a unique simple pole, then
f: X =Pl a contradiction since g = 1.

In the devoir, w does not vanish, hence this map ® such that d® = w does not vanish,
hence ® is locally injective and hence a cover. A cover of an elliptic curve is an elliptic
curve.

How to prove that A is a lattice in C.

|w|? is a Riemannian metric locally isomorphic to |dz|?> = dz? + dy?. There is a map
(X,|o?) 2, (C, |dz|?) which is an isometry, since |w|? is geodesically complete on X, |@|?
is geodesically complete on X hence ® is an isomorphism.

Dual point of viewL there is X € H°(TX) such that w(X) = 1. The flow of X
is complete: there is f : C x X — X with open orbits, hence there is only one orbit
X = C/Stab(P). Stab(P) is a discrete subgroup such that the quotient is compact, hence
Stab(P) is a lattice.

Theorem 3.11 (Tischeler theorem). Let M be a compact real manifold andw € Z*(M)

a closed one-form, which does not vanish on M. Then there is a submersion M — S'.

Proof. Hi(M,Z) — (Z*(M))*, [y] = [w — f,y w], consider the periods of w.

The image of [ is the obstruction for w to admit a primitive, in H Y(M,R). By a
slight deformation of w € H}, (M, R) we can assume that wy is close to w, does not vanish
and admits rational periods (because H'(M, Q) dense in H'(M,R)). Multiplying by some

n € Z, nwy will have integer periods.

since df = w # 0.
The action of 7 (M) on M gives

fly-m) = p(7]) + f(m),
where v € (M) and p([v]) = fww. O
Theorem 3.12 (Suale). Diff+(S?) has the same homotopy type as SO(3,R).

Proof. Any smooth vector field on S? gives a 1-parameter family of diffeomorphisms.
Idea of proof (earle-Eells): Construct the sapce of complex structures on S? compatible

with the orientation.
Comp™ = {j € H*(End(TS?)) : j o j = —id, orientation}.

By isothermal coordinates theorem they are all integrable and define complex structure.
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Dif f+(S?) acts naturally on Comp™, Vo € Dif f+(S?) and j € Comp™, define ¢*j €
Comp™.
Uniformization theorem implies there is only one orbit: Vj € Comp™, there is ¢ €

Dif f*(S?) such that j = ¢*jo, jo is the standard complex structure. Moreover,
Stab(jo) = { € Diff* : ¢"jo = jo} = Aut(P'(C)) = PSL(2,C).

Thus
Comp™ = Dif fT(S?)/PGL(2,C).

Comp™ is the space of sections {s € HY(End(TS?)) : j2 = —id} of a bundle over S?
whose fiber is the hyperbolic plane.

Topology: The space of sections of a bundle of contractible fiber is contractible
Dif fT(S?) = PGL(2,C) x Comp™(S?),

hence Diff*(S?) has the same homotopy type as PGL(2,C) and PGL(2,C) is homeo-
morphic to SO(3,R) x R? hence has the same homotopy type as SO(3,R).
[
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