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1.1 Introduction and review

Locally modelled on Cn. For the specific case when n = 1: Complex curves, Riemann
surfaces. One endowed with structures locally modelled on C. Holomorphic functions on
C and on Cn.

Definition 1.1. A holomorphic function f : U ⊂ C → C is a differentiable map
from U ⊂ Rn → Rn such that the differential commutes with multiplication by i (Complex
linearity).

Multiplication by i in coordinate x, y is

(
0 −1

1 0

)
. ∂

∂x =

(
1

0

)
and ∂

∂y =

(
0

1

)
, theni

∂
∂x = ∂

∂y

i ∂
∂y = − ∂

∂x

. Then if df commutes with i, we have

idf(
∂
∂x) = df(i ∂

∂x) = df( ∂
∂y )

idf( ∂
∂y ) = df(i ∂

∂y ) = −df( ∂
∂x)

⇐⇒

i
∂f
∂x = ∂f

∂y ,

i∂f∂y = −∂f
∂x

(Cauchy-Riemann Equations).

⇐⇒ df =

(
a −b
b a

)
=Ma+bi.

On V ⊂ C, dx, dy are 1-forms.

dz = dx+ idy, dz = dx− idy,

are 1-forms with values in C. For f : V → C, df = ∂f
∂xdx+ ∂f

∂y dy is a 1-form with value in
C. df = ∂f

∂z dz+
∂f
∂z dz. Then we say f is holomorphic, iff df is C-linear, iff ∂f

∂z = 0. Indeed,
with notations 

∂
∂z = ∂

∂x · ∂x
∂z + ∂

∂y · ∂y
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
∂
∂z = ∂

∂x · ∂x
∂z + ∂

∂y · ∂y
∂z = 1

2

(
∂
∂x + i ∂

∂y

)
∂f
∂z = 0 iff ∂f

∂x = −i∂f∂y .

Theorem 1.1. f is holomorphic iff f is analytic, meaning that for any u ∈ U , there is a
power series

∑
n≥0

anw
n of radius ρ such that for any 0 < r < ρ such that D(u, r) ⊂ U , and

for any z ∈ D(0, r), f(u+ z) =
∑
n≥0

anz
n with an = f (n)(u)

n! .

Proof. We only need to prove the only if part, and this is a consequence of Cauchy
formula

f(z0) =
1

2πi

∫
γ

f(ξ)

ξ − z0
dξ.

The holomorphic ω := f(ξ)
ξ−z0

dξ on U \ {z0} is closed,

dω = ∂ω + ∂ω =
∂

∂ξ

(
f(ξ)

ξ − z0

)
dξ ∧ dξ + ∂

∂ξ

(
f(ξ)

ξ − z0

)
dξ ∧ dξ = 0,
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since dξ ∧ dξ = 0.
By Stocks formula∫

γ

f(ξ)

ξ − z0
dξ =

∫
z0+ε·ei2πt

f(ξ)

ξ − z0
dξ =

∫ 1

0
f(z0 + ε · ei2πt)dt ε→0−−−→ f(z0).

Now we use Cauchy formula to prove (roughly) that if f is holomorphic, we have f is
analytic.

f(u+ z) =
1

2πi

∫
γ

f(ξ)

(ξ − u)− z
dξ

=
1

2πi

∫
γ

f(ξ)

ξ − u

1

1− z
ξ−u

dξ

=
1

2πi

∫
γ

f(ξ)

ξ − u

∞∑
n=0

(
z

ξ − u
)ndξ

=

∞∑
n=0

( 1

2πi

∫
γ

f(ξ)

(ξ − u)n+1
dξ
)
zn.

Note that the coefficient 1
2πi

∫
γ

f(ξ)
(ξ−u)n+1dξ =

f (n)(u)
n! .

For several variables Cn = R2n, (z1, · · · , zn) → (x1, y1, · · · , xn, yn), the multiplication
by i defines an operator j ∈ End(R2n) with j2 = − id. Hence we have i ∂

∂xk
= ∂

∂yk
.

Definition 1.2. f : U ⊂ Cn → C is a holomorphic function if f is differentiable and df

commutes with multiplication by i.
This is equivalent to, for any 1 ≤ k ≤ n, idf( ∂

∂xk
) = df(i ∂

∂xk
) = df( ∂

∂yk
), iff i ∂f

∂xk
= ∂f

∂yk
,

iff ∂f
∂zk

= 0.

Theorem 1.2. A function f : U ⊂ Cn → C is holomorphic iff f is analytic, meaning that
for any u ∈ U , there is a polydisk

{|z1 − u1| < R1, · · · |zn − un| < Rn} ⊂ U,

and a power series
∑

i=(i1,···in),ik≥0

aiz
i1 · · · zin such that for any z with |zi| < Ri, we have

f(u+ z) =
∑
i
aiz

i1 · · · zin and
∑
i
|ai|ri11 · · · rinn < +∞ fo any rk < Rk.

Proof. This is a consequence of Cauchy formula

f(u) =

∫
|ξk−uk|=rk,∀k

f(ξ)
dξ1

ξ1 − u1
∧ · · · ∧ dξn

ξn − un
.

Corollary 1.1. If U ⊂ Cn is connected and f : U → C is holomorphic and vanishes on a
non-trivial open set V ⊂ U , then f ≡ 0 on U .
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Proof. Define

O := {z ∈ U : ∃V (z) a neighborhood of z such that f |V (z) ≡ 0}.

O is not empty since V ⊂ O. Consider the set

F = {z ∈ U :
∂If

∂zI
= 0, ∀I = (i1, · · · , in), ik ≥ 0}.

Since F = O hence O is a non-empty closed and open set in U , hence O = U .

Corollary 1.2 (The maximal principle). Let f : U ⊂ Cn → C be a holomorphic
map defined on the connected set U . Assume there is u ∈ U and an open neighborhood
u ∈ V ⊂ U such that |f(u)| ≥ |f(z)| for any z ∈ V , then f ≡ f(u) on U .

Proof. Deduced from Cauchy formula

f(u) =

∫
|ξk−uk|=εk,∀k

f(ξ)
dξ1

ξ1 − u1
∧ · · · ∧ dξn

ξn − un
,

with εk > 0 small enough such that {(z1, · · · , zn) : |zk − uk| < εk} ⊂ V .

f(u) =

∫ 1

0
· · ·
∫ 1

0
f(u1 + ε1 · e2iπt1 , · · · , un + εn · e2iπtn)dt1 · · · dtn.

Then

|f(u)| ≤
∫ 1

0
· · ·
∫ 1

0
|f(u1 + ε1 · e2iπt1 , · · · , un + εn · e2iπtn)|dt1 · · · dtn ≤ |f(u)|.

Thus we have equalities in both inequalities.
First equality says f(u1+ε1 ·e2iπt1 , · · · , un+εn) have the same argument. The second

equality says that |f(u1 + ε1 · e2iπt1 , · · · , un+ εn| = |f(u)| for any ε1, · · · , εn. Hence f is
constant ≡ f(u) on the polydisk . Then by Corollary 1.1, f ≡ f(u) on U .

Definition 1.3. f : V ⊂ Cn → Cm is holomorphic if f = (f1, · · · , fm) with fk holomor-
phic, ∀1 ≤ k ≤ m.

If m = n, f is called a local biholomorphism if for any u ∈ U , there is V (u) ⊂ U

a neighborhood of u such that f |V (u) : V (u) → f(V (u)) is a holomorphic bijection with
inverse which is holomorphic.

A biholomorphism is a bijection which is a local biholomorphism at any point.

Theorem 1.3 (Constant Rank Theorem). Let f : U ⊂ Cn → Cm be a holomorphic
map and assume ∃u ∈ U such that on a neighborhood V (u) of u, the rank of the differential
(
(
∂fi
∂zl

)1≤i≤m

1≤l≤n
) is constant equal to k.

Then there exists a local biholomorphism between an open neighborhood of u in V (u),
called W (u) and the polydisk Dn = {|zi| < 1,∀1 ≤ i ≤ n}, ϕ : W (u) → Dn sends u to
0, and a local biholomorphism between f(W (u)) and Dm, ψ sends f(u) to 0, such that
ψ ◦ f ◦ ϕ−1 : Dn → Dm is (z1, · · · , zn) 7→ (z1, · · · , zk, 0, · · · , 0).

Remark 1.1. Particular case for m = n = k, local inverse theorem says that df has rank
k = m = n at a point u iff f is a local biholomorphism in the neighborhood of u.
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1.2 Typical examples with their automorphism group

Definition 1.4. A complex manifold M is a topological Hausdorff space which admits a
cover by open sets (Ui)i∈N such that there exists ϕi : Ui → ϕi(Ui) ⊂ Cn a collection of
homeomorphism for any Ui and an open set ϕi(Ui) ⊂ Cn, such that the transition map

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

is biholomorphic.
The pair (Ui, ϕi) is called a local coordinate on M . The collection of (Ui, ϕi)i∈I is

called an atlas. Two atlases are equivalent if their union is still an atlas. An equivalent
class of atlases is the structure of a complex manifold. n is called the complex dimension
of the manifold.

Example 1.1. For n = 1 they are of complex dimension one (with this point of view
they are complex curves). But they are real surface (real dimension 2) and they are called
Riemannian surfaces.

Example 1.2. Open sets in C are complex manifolds. D = {z ∈ C : |z| < 1} is a complex
manifold which is not biholomorphic to C (Liouville theorem). There are nice bijection
between D and H = {z ∈ C : Im z > 0}. F (z) = i−z

i+z : H → D and G(w) = i1−w
1+w : D → H.

Example 1.3. Riemann surface. x2 + y2 + z2 = 1 is a Real manifold of dimension 2.

ϕN : S2 \ {N} → C ∼= R2, ϕS : S2 \ {S} → C ∼= R2; ϕN ◦ ϕ−1
S : C∗ → C∗, z 7→ 1

z
.

is not holomorphic. But by setting ϕS : S2 \ {S} → C ∼= R2, we have the transition map
z 7→ 1

z .
This is the same complex structure as P1(C), the complex projective line:

P1(C) = {linear vector spaces of dimension 1 in C2}.

(z1, z2) ∼ (λz1, λz2) if λ ∈ C∗, hence P1 ∼= C2 \ {0}/C∗. An equivalence class is [z1 : z2].
On the open set z1 6= 0, [z1, z2] 7→ z2

z1
. On the open set z2 6= 0, [z1, z2] 7→ z1

z2
. Then the

transition map is z 7→ 1
z from C∗ to C∗.

Exercise 1.1. Aut(P1): bijections which are holomorphic and with holomorphic inverse,
are exactly those given by linear transformation of C2.

Proof. Claim: any meromorphic function on P1 is rational, i.e. of the form P
Q with P,Q ∈

C[X]. In fact let α1, · · · , αn be poles of f in C. Then there exists k1, · · · , kn ∈ N such
that (z − α1)

k1 · · · (z − αn)
knf is holomorphic on C with a possible pole at ∞, so it’s a

polynomial P , then f is rational.
If f is an automorphism, it has a unique pole and unique zero, so f = az+b

cz+d .
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Example 1.4. Take Cn and (e1, · · · , e2n) a basis of the real vector space R2n. Then
Cn/Ze1 ⊕ · · · ⊕ Ze2n is a real manifold diffeomorphic to (S1)2n and it is also a complex
manifold. A particular case of interest is n = 1, C/Ze1 ⊕ Ze2 is a complex structure on
S1 × S1. What are local coordinates here?

Assume x0 ∈ C and r > 0 such that B(x0, r) small enough such that all γ · B(x0, r)

are distinct when γ ∈ Ze1 ⊕ Ze2 are transitions.

Exercise 1.2. Let X = C/Ze1 ⊕ Ze2, with (e1, e2) a real basis of R2. Then X is bi-
holomorphic to C/Z ⊕ Zτ , where τ ∈ H. Moreover, τ, τ ′ ∈ H define the same complex
structure iff ∃g ∈ PSL(2,Z) such that gτ = τ ′ i.e. ∃a, b, c, d ∈ Z with ad − bc = ±1 such
that aτ+b

cτ+d = τ ′.

Proof. We admit the result Aut(C) = {αz + β : α ∈ C∗, β ∈ C}. If f : C/Z + Zτ →
C/Z + Zτ ′ is a biholomorphism, it induces a biholomorphism f̃ : C → C, hence there is
α ∈ C∗ and β ∈ C, such that f̃(z) = αz + β. Moreover, we have f̃(0) = 0, hence β = 0.

We have α(Z+ Zτ) = Z+ Zτ ′, then there is a, b, c, d ∈ Z such thatcα+ dατ = 1

aα+ bατ = τ ′
⇒ α =

1

c+ dτ
⇒ τ ′ =

a+ bτ

c+ dτ
.

Since the map is invertible, by solving

A ·

(
1

a+bτ
c+dτ

)
=

(
1

c+dτ
τ

c+dτ

)
⇒ A ·

(
c d

a b

)
= id,

we say

(
c d

a b

)
∈ GL(2,Z), i.e. ad− bc = ±1.

Definition 1.5. Let X be a complex manifold and f : X → C a continuous map. Then f is
holomorphic iff for any local chart (Ui, ϕi) of X, f ◦ϕ−1

i : ϕi(Ui) → C is holomorphic. This
notion is independent of the chart because on Ui∩Uj, we have f ◦ϕ−1

j = (f ◦ϕ−1
i )◦(ϕi◦ϕj).

Exercise 1.3. If X is a connected compact complex manifold, any holomorphic map
f : X → C is constant.

Proof. My proof: f is open.
Professor’s proof. By maximal principle. Take x0 ∈ X such that |f(x0)| = max

z∈X
|f(z)|.

Then f admits a local maximal. Choose a locally chart (Ui, ϕi) around x0 at x0, then by
maximal principle, f ◦ ϕ−1

i : ϕi(Ui) → C is constant. Then f ≡ f(x0) in Ui.
Let O be the open set {z ∈ X : ∃V (z)s.t.f |V (z) ≡ f(x0)}. Then Ui ⊂ O hence O is

not empty. But O is also the closed subset of X = {z ∈ X : f(z) = f(x0),
∂f
∂zI

= 0}. Then
O is a non empty, closed and open set in X, hence O = X.

Definition 1.6. Let X and Y be complex manifolds. A continuous map f : X → Y is a
holomorphic map, if for every chart (Ui, ϕi) of X and (Wj , ψj) of Y , we have

ψj ◦ f ◦ ϕ−1
i : ϕi(Ui ∩ f−1(Wj)) → ψj(Wj)
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is holomorphic.
f : X → X is a biholomorphism if f is holomorphic, bijection and f−1 is holomorphic.

It is enough to verify that f is holomorphic, bijective and df(u) is invertible for any u ∈ X.
The group of biholomorphisms of X is also called Aut(X).

Exercise 1.4. (1) Aut(X) with X = P1(C) is

PSL(2,C) =
{(a b

c d

)
∈ GL(2,C) : ad−bc 6= 0,

(
a b

c d

)
[z1 : z2] = [az1+bz2 : cz1+dz2]

}
.

(2)

Aut(H1) = PSL(2,R) =
{(a b

c d

)
∈ GL(2,R) : ad−bc 6= 0,

(
a b

c d

)
[z1 : z2] = [az1+bz2 : cz1+dz2]

}
.

(3)

Aut(C) = {f ∈ Aut(P1(C)) : f(∞) = ∞} = {az + b : a ∈ C∗, b ∈ C}.

Proof.

(1) See Exercise 1.1.

(3) Claim: f must be a polynomial. If not, g(z) = f(1z ) has an essential singularity.

Casorati-Weierstrass theorem. If g : C∗ → C has an essential singularity at 0, then
g maps any neighborhood of 0 to a dense set. If not, there is α ∈ C, ε > 0 such that
g(U)∩D(α, ε) = ∅, hence h(z) = 1

g(z)−α is bounded around 0 so holomorphic on U .
Then g(0) = 1

h(0) + α, impossible.

Look at V = {z : |z| > 12}, then f(V ) ⊂ C is dense. But f({z : |z| < 12} is open,
f can’t be injective! So f must be a polynomial. And f must be of degree 1 by
injectivity.

(2) We prove that Aut(D2) = PSL(2,R).

Fix a ∈ D, consider ϕa(z) =
z−a
1−az ∈ Aut(D). Given f ∈ Aut(D), a := f(0) consider

g = ϕa ◦ f ∈ Aut(D), g(0) = 0.

Schwarz’s lemma. f : D → D holomorphic with f(0) = 0, then for any z ∈ D,
|f(z)| ≤ |z|. Moreover, if equality holds at a point, then there is θ ∈ S1 such that
f(z) = eiθz.

|g(z)| ≤ |z| and |g−1(z)| ≤ |z|. Then equality holds.

7



1.3 Quotient space

Exercise 1.5. Let X be a complex manifold and Γ ⊂ Aut(X) which acts on X properly
and discontinuously, meaning that for any K1,K2 compact sets in X,

#{γ ∈ Γ : γ ·K1 ∩K2 6= ∅} < +∞,

and Γ acts without fixed points: if γ · x = x for some x ∈ X then γ = id.
Then X/Γ is a complex manifold and X → X/Γ is a local biholomorphism.

Exercise 1.6. Let C2 \{0} = X and Γ = 〈2〉 : (z1, z2) ∼ (2z1, 2z2). Then C2 \{0}/〈2〉 is a
Hopf manifold diffeomorphic to S1×S3 and endowed with a complex structure (Here we
treat S1× S3 as a real manifold, hence we can endow S1× S3 with this complex structure).

Proof: from the polar coordinate, R4 \ {0} =]0,∞[×S3.
More results is in Example 1.6

Definition 1.7. Let X and Y be complex manifolds and f : X → Y be a holomorphic map.
Then f is called a submersion if ∀x ∈ X, rank(df(x)) = dimY (hence dimX ≥ dimY ).
f is called immersion if df(x) is injective at any x ∈ X (hence dimX ≤ dimY ).

Definition 1.8. Let X be a complex manifold and V ⊂ X be a subset. Then V is called
a complex submanifold of X if for any v ∈ V there exists an open set v ∈ U ⊂ X and
a holomorphic submersion ϕ : U → Dk such that U ∩ V = ϕ−1({0}).

In local coordinates, by the constant rank theorem we have (ψi) such that

(ϕ ◦ ψ−1
i )(z1, · · · , zn) = (z1, · · · , zk).

In these coordinates, the subset V ∩U is defined as ψ−1
i (Dn∩{z1 = · · · = zk = 0}). It is a

local chart proving that the complex submanifold V is a complex manifold of the dimension
n− k. We call k the codimension of V in X.

Construction of submanifolds

Theorem 1.4. Let f : X → Y be a holomorphic map between two complex manifolds.
Let y ∈ Y and assume that ∀x ∈ f−1({y}), the rank of df(x) is the dimension of Y . Then
f−1({y}) is a complex submanifold of X of dimension dimX − dimY .

Proof. This is an application of constant rank theorem. Let x ∈ f−1({y}) and in local
coordinates (Ui, ϕi) in the neighborhood of x and (Wj , ψj) in the neighborhood of y, we
have (ψj ◦f ◦ϕ−1

i )(z1, · · · , zn) = (z1, · · · , zm). Locally f−1(u) is parametrised in the chart
ϕi by (0, · · · , 0, zm+1, · · · , zn). Then f−1({y}) is a submanifold of dimension n−m.

Example 1.5. {x2 + y2 + z2 = 1} is a submanifold codim 1 in R3.

Exercise 1.7. The only compact submanifold in Cn are points.
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Proof. Let V be a connected compact submanifold of Cn. For any coordinate zk, zk|V :

V → C is a holomorphic function on V . Since V is compact, zk is constant hence V is a
set of one point.

Definition 1.9. Here we ignore the definition of complex projective space, but we
emphasis that the projection from Cn+1 \ {0} to Pn(C) is holomorphic.

Example 1.6. Recall that we defined Hopf manifold in Example 1.6 as Cn+1\{0}/(z1, · · · , zn+1) ∼
(2z1, · · · , 2zn+1). The map M := Cn+1 \ {0}/Z → Pn(C) = Cn+1 \ {0}/C∗ is holomorphic
and the fibers are identified with C∗/Z (here Z is generated by ×2).

The exponential map C → C∗ is a universal cover. exp(z1) = exp(z2) ⇐⇒ z1 = z2 +

2ikπ, hence exp : C/2iπZ ∼= C∗ is a biholomorphism. Then exp : C/2iπZ+ln 2Z ∼= C∗/〈2〉.
The fibers of the projection C → C∗/〈2〉 are the elliptic curves exp : C/2iπZ+ ln 2Z.

1.4 Complex projective manifolds

Definition 1.10. Compact submanifolds in Pn(C) (they are called complex projective
manifolds).

Proposition 1.1. V ⊂ Pn(C) is a complex projective manifold if V is a submanifold in
Pn(C) and there are f1, · · · , fk homogeneous polynomials in C[x0, · · · , xn] such that

V =
{
[z0, · · · , zn] ∈ Pn(C) : fl(z0, · · · , zn) = 0, ∀l ∈ {1, · · · , k}

}
.

There is a theorem of Chow proving that any complex submanifold in Pn(C) is a complex
projective manifold (GAGA Principal).

Example 1.7. Let f be an irreducible homogeneous polynomial in C[x, y, z] such that

{(x, y, z) ∈ C3 : f(x, y, z) =
∂f

∂x
(x, y, z) =

∂f

∂y
(x, y, z) =

∂f

∂z
(x, y, z) = 0} = ∅.

Then V = {[x, y, z] ∈ P2(C) : f(x, y, z) = 0} is a 1-dimensional submanifold and hence a
complex projective curve in P2(C).

Proof. Euler formula, if f is homogeneous of degree m, f(λx, λy, λz) = λmf(x, y, z), then

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= mf.

Indeed, take derivative with respect to λ,

x
∂f

∂x
(λx, λy, λz) + y

∂f

∂y
(λx, λy, λz) + z

∂f

∂z
(λx, λy, λz) = mλm−1f(x, y, z).

Then take λ = 1.
Take p = [x, y, z] such that z 6= 0. We check the coordinates in the neighborhood of p

such that (u = x
z , v = y

z ).
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Assume f(p) = 0, then f(u, v, 1) = 0 in coordinates (u, v). There is at lest one of the
derivates ∂f

∂u(u, v, 1) and ∂f
∂v (u, v, 1) is non zero. Indeed if by contradiction,

f(u, v, 1) =
∂f

∂u
(u, v, 1) =

∂f

∂v
(u, v, 1) = 0,

by homogeneous, we get f(x, y, z) = ∂f
∂x (x, y, z) = ∂f

∂z (x, y, z) = 0 and by Euler formula
∂f
∂z (x, y, z) = 0, a contradiction!

The same proof implies that for any irreducible homogeneous polynomial f ∈ C[x0, · · · , xn]
such that

More general: Assume f1, · · · , fk are homogeneous polynomials in C[x0, · · · , xn] such
that rank

(
∂fi
∂zj

)
1≤i≤k,1≤j≤n

is r at each point. Moreover if assume r = k, thus it is enough
to assume that r = k at points on the vanishing set. (Constant rank)

Then
V =

{
(z0, · · · , zn) ∈ Cn+1 : fl(z0, · · · , zn) = 0, ∀l ∈ {1, · · · , k}

}
is a complex submanifold of codimension r in Cn+1 \ {0} such that (z0, · · · , zn) ∈ V ⇐⇒
(λz0, · · · , λzn) ∈ V , ∀λ ∈ C∗.

Then V = π(V ), with π : is such that

V =
{
v ∈ Pn(C) : fl(v) = 0,∀l ∈ {1, · · · , k}

}
is a complex projective manifold of codimension r in Pn(C).

1.5 Real and complex vector bundles

To any real or complex manifold X, one associates a canonical manifold TX which is its
tangent space and has dimension 2 dimX. TX is an example of vector bundle over X.

Definition 1.11. Let X be a manifold (could be real or complex). A real (complex) vector
bundle over X is a manifold E endowed with a submersion π : E → X such that there is
an open cover (Uα)α∈I of X by the open sets Uα with the property that for all α ∈ I, there
is τα : π−1(Uα)

∼=−→ Uα × Rn a diffeomorphism such that p1 ◦ τα = π.
Moreover if Uα∩Uβ 6= ∅, then π−1(Uα∩Uβ) ⊂ π−1(Uα) and π−1(Uα∩Uβ) ⊂ π−1(Uβ),

τβ ◦ τ−1
α : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn, (u, v) 7→ (u, gβα(u)v),

where gβα : Uα ∩ Uβ → GL(n;R).

Remark 1.2. τα ◦ τ−1
β = (τβ ◦ τ−1

α )−1, and hence gαβ(u) = g−1
βα(u).

If Uα ∩ Uβ ∩ Uγ 6= ∅, we have gαγ · gγβ · gβα = 1. Also gαα = 1. We will see those
conditions define “1-cocycle” with values in GL(n,R) or GL(n,C) in sheaf theory.

Definition 1.12. If X is a complex manifold and E is a complex vector bundle such that
the transition cocycle gβα : Uα∩Uβ → GL(n,C) is a holomorphic map. Then E is complex

10



manifold and π : E → X is holomorphic. This is called holomorphic complex vector
bundle.

A map s : X → E is called a section if π ◦ s = id. The section is holomorphic if E
is a holomorphic bundle, and s : X → E is holomorphic as maps between two complex
manifolds. The space of sections of a vector bundle is a vector space.

Definition 1.13. A rank n holomorphic vector bundle is trivial iff it admits n linearly
independent (global) holomorphic sections.

Remark 1.3. Notice that not all holomorphic vector bundles admit holomorphic (global)
sections. But all of them admit (local) sections over the sets (Uα)α∈I .

By definition π−1(Uα)
τα−→ Uα ×Cn holomorphic and τ−1

α ◦ sα is a section of π−1(Uα),
where sα(u) =

(
u, (1, 0, · · · , 0)

)
. Moreover, τ−1

α ◦ sα|Uα will never vanish.

Definition 1.14. Two vector bundles E1
π1−→ X and E2

π2−→ X are isomorphic if there
exists f : E1 → E2 a diffeomorphism with π2 ◦ f = π1 and for any x ∈ X, f : π−1

1 ({x}) →
π−1
2 ({x}) is a vector space isomorphism. i.e. at each x ∈ X, f gives an isomorphism

between E1,x and E2,x.

E1 E2

X

f

π1 π2

Construction of holomorphic vector bundle

Example 1.8. Assume X is a real manifold with an atlas (Ui, ϕi)i∈I then the real vector
bundle over X defined by the cocycle Ui ∩ Uj → GL(n,R), u 7→ d(ϕj ◦ ϕ−1

i )(ϕi(u)) is the
real tangent bundle TX of X. It is a manifold of dimension 2 dimX.

This bundle is isomorphic to the bundle of 1-jets of maps from R into X given by
the following geometric construction.

E as being the space of curves: γ :] − ε, ε[→ X and γ1 ∼ γ2 if γ1(0) = γ2(0) and
γ′1(0) = γ′2(0) is true in a local coordinates, this will be true in any other local coordinate.
E = {γ}/ ∼ (1-jets of curves), E → X, [γ] 7→ γ(0).

Exercise 1.8. Verify TX is given by the previous cocycle d(ϕj ◦ ϕ−1
i ).

Assume X is complex manifold with local charts (Ui, ϕi). Then the cocycle d(ϕj ◦ϕ−1
i )

is with values in GL(n,C) and holomorphic. It defines a holomorphic vector bundle of
rank r over X, called the holomorphic vector bundle TX.

Another construction of TX is given by the 1-jets of maps from C to X. We will say
that the holomorphic map

γ1 : D(0, ε) = {|z| < ε} → X

is equivalent to γ2 iff

γ1(0) = γ2(0)

γ′1(0) = γ′2(0)
. Then {γ}/ ∼ is a complex vector bundle E over

X through the map E → X, [γ] 7→ γ(0) and it is isomorphic to TX.

11



Vector fields and 1-forms

If f : X → Y is a differentiable map, then df : TX → TY is a differentiable map.
A section of TX is called a vector field on X. Locally a vector filed is given by

f1
∂

∂x1
+ · · ·+ fn

∂
∂xn

where fi are smooth local functions.
If f : X → Y is a holomorphic map from X a complex manifold to a complex manifold

Y , df : TX → TY between holomorphic tangent spaces.
A holomorphic section of TX is called a holomorphic vector field. Locally it is

given by
n∑

k=1

fk(z1, · · · , zn) ∂
∂zk

with fk holomorphic function.

The transition map of P1(C) is z 7→ 1
z hence the cocycle of TP1(C) is given by d(1z ) =

− 1
z2

,

U1 × C → U2 × C ∼= U2 × C

(z, v) 7→ (
1

z
,− 1

z2
v) 7→ (

1

z
,
1

z2
v)

Exercise 1.9. Find all global sections of TP1(C).

Proof. Assume we have a section s1 = f(z) ∂
∂z on U1 and s2 = g(w) ∂

∂w on U2. On U1 ∩U2,
we have

f(z)
∂

∂z
= f(

1

w
)
∂w

∂z

∂

∂w
= −f( 1

w
)w2 ∂

∂w
.

Then on U1 ∩ U2, we shall have

−w2f(
1

w
) = g(w).

Consider the power series of f and g. Since both f and g are holomorphic on C, we
say they don’t have negative degree part. Hence the maximal degree for f is 2.

Moreover, given s1(z) = f(z) ∂
∂z = (az2+bz+c) ∂

∂z , by setting s2 = −(a+bw+cw2) ∂
∂w ,

we get a global section.
Then we finally proved that Γ(TP1) is spanned by ∂

∂z , z
∂
∂z , z

2 ∂
∂z , with dimension 3.

Definition 1.15. If E is a vector bundle over X, its dual vector bundle E∗ is defined as
being the vector bundle associated to the cocycle t(gβα)

−1 where gβα is the cocycle defining
E.

(Ex)
∗ = (π−1({x}))∗ will be the fibers of E∗ over {x}.

Remark 1.4. Note that the action of g ∈ GL(n,R) on Rn changes to tg−1 when we
associated the action on (Rn)∗ (−1 is due to the reverse direction and t is because we
change the column vector into a row vector).

In particular (TX)∗ is the vector bundle over X for which the sections are 1-forms. A
local section of X is given by

n∑
k=1

fkdxk, where fk is a smooth function. If X is a complex

manifold, (TX)∗ will be a holomorphic vector bundle for which the local holomorphic
sections will be given by

n∑
k=1

fk(z1, · · · , zn)dzk where fk is a holomorphic function. (TX)∗

holomorphic cotangent bundle, also denoted by Ω1
X .
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Example 1.9. P1(C), (TP1(C))∗ given by the cocycle C∗ → C∗, z 7→ z2.

Exercise 1.10. Find all the global sections of (TP1(C))∗.

Proof. Similar to the proof of Exercise 1.9, we say there is no nontrivial global sections of
(TP1)∗.

Definition 1.16. An isomorphism from E to F , where F are holomorphic bundles over
X, is a holomorphic section of (E∗) ⊗ F where the holomorphic section is at each point
an isomorphism (Hom(E,F ) ∼= E∗ ⊗ F ).

Example 1.10. Assume L1 and L2 are line bundles (rank 1). Then L∗
1 is given by the

cocycle (g1βα)
−1, where g1βα is the cocycle. L∗

1 ⊗ L2 is given by the cocycle (g1βα)
−1 · g2βα.

Proposition 1.2. L1
∼= L2 iff there is a non vanishing holomorphic section of L∗

1 ⊗L2
∼=

Hom(L1, L2) iff L∗
1 ⊗ L2 is holomorphically trivial (∼= X × C).

Theorem 1.5. Let E be a holomorphic line bundle over a compact Riemann surface X.
Then the space of holomorphic sections of E is a vector space of finite dimension.

Example 1.11. If E = X×C, then holomorphic sections of E are holomorphic maps from
X into C. By the maximal principle, those maps are constant. So the space of sections
have dimension 1.

Example 1.12. Tautological line bundle τ .

L ⊂ P1 × C2 \ {0} = {(x, l) : x ∈ P1, l ∈ C2 \ {(0, 0)}, l = [x]}.

This defines a holomorphic line bundle over P1(C) with cocycle C∗ → C∗, z 7→ z. Indeed

[z : 1] 7→ a(z, 1) = az(1, w).

Recall that for two line bundles L1 and L2 given by cocycles g1UV and g2UV , the line
bundle L1⊗L2 is given by g1UV · g2UV . In particular, L⊗m

1 is given by (g1UV )
m. The inverse

of L1 is L−1
1

∼= L∗
1.

Thus TP1 = τ−2, and we write τ = o(−1), o(m) = τ−m, hence TP1(C) = o(2).

Exercise 1.11. Prove that the space of holomorphic sections of o(m) has dimension m+1

and the space of sections identifies with polynomials in on variable of degree ≤ m.

Proof. Similar to the proof of Exercise 1.9.

Remark 1.5. The space of holomorphic sections is a vector space called H0(X,L). We
will see that H1(X,L) will also be of finite dimensional.

Proposition 1.3. The space of smooth sections is of infinite dimension.
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Proof. For the trivial bundle X × C, they are C∞ maps from X into C. Moreover for
any line bundle L, consider a local trivialization: there is U ⊂ X such that L|U ∼= U ×C.
Consider the section s : U → U × C, u 7→ (u, 1) which gives a section of L|U . Take
ρ : U → R+ a bump function with Supp(ρ) ⊂ U . Then ρ · s will extend by zero outside
U .

Let us restate Remark 1.5

Theorem 1.6. Let E be a holomorphic line bundle over a compact Riemann surface X.
Then H0(X,L) is a vector space of finite dimension.

Proof. We prove, by Riesz theorem, that for some norm on H0(X,L), the ball of radius 1

is compact.
We will endow L with a hermitian metric, meaning that on each fiber Lx, x ∈ X, we

have an inner product: Lx
∼= C, we take |z|. In a local trivialization L|U ∼= U × C, we

consider h = |z|.
Let X =

∪
α∈I

Uα such that L|Uα
∼= Uα × C, consider smooth functions ρα : Uα → R+

such that Supp(ρα) ⊂ Uα is compact and
∑
α∈I

ρα = 1 (and locally finite).

Define the hermitian metric h on L as being
∑
α∈I

ρα|zα|, where L|Uα
∼= Uα × C. For

any section s ∈ H0(X,L) we define ‖s‖h = max
p∈X

h(p)
(
s(p)

)
. We want to prove that the

unitary ball of H0(X,L) is compact.
Let (sn)n≥1 ⊂ H0(X,L) such that ‖sn‖h ≤ 1. As before let X =

∪
α∈I

Uα such that

L|Uα
∼= Uα × C. For technical reason, consider Wα ⊂ Vα ⊂ Uα such that Wα ⊂ Vα,

Vα ⊂ Uα and
∪
α
Wα = X.

On Uα, there is a nowhere vanishing sections sα ∈ H0(Uα, L) which trivializes L|Uα ,
sn|Uα = fn · sα for fn ∈ O(Uα).

1 ≥ ‖sn|Uα‖h ≥ |fn|∞ · min
p∈Vα

h(p)
(
sα(p)

)
,

hence on Vα, |fn| ≤ 1

min
p∈Vα

h(p)
(
sα(p)

) , i.e. fn is bounded on Vα. Then (fn)n≥1 is an equicon-

tinuous family on Wα. By Montel theorem, (fn)n≥1 admits a subsequence which converge
on Wα. Then there is a unique fα∞ ∈ O(Wα) and a subsequence σ : N → N, such that
lim
n→∞

fασ(m) = fα∞ and the convergence is uniform on any compact set in Wα.
We can use the diagonal process to get that for any α ∈ I, lim

n→∞
fασ(n) = f∞. On

Wα ∩ Wβ 6= ∅, there is a cocycle condition fαn = gαβf
β
n hence fασ(n) = gαβf

β
σ(n) hence

fα∞ = gαβf
β
∞. The fα∞ glue into a global section of H0(X,L), hence s∞ is a limit of

sσ(n).
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2 Riemannian Surface

2.1 Definitions and Isothermal Coordinate

Definition 2.1. Let V be a real vector space of dim 2, oriented. A complex structure
on V is j ∈ End(V ) such that j ◦ j = − id and we will ask that j is compatible with the
orientation, ∀v ∈ V , (v, jv) is a direct basis, we should think that jv = i · v.

Proposition 2.1. The complex structure on V is equivalent with an inner product on V

up to a resealing.

Proof. Assume we have g, then define jv as being jv ⊥ v and ‖jv‖ = ‖v‖, then (v, jv) is
a direct basis compatible with the orientation.

If g1 and g2 are two inner products, g1 and g2 define the same complex structure if
∃λ ∈ R+ such that g1 = λg2.

Assume j is defined, then define g as the following inner product

‖v‖ = λ, ‖jv‖ = λ, 〈v, jv〉 = 0.

Thus define g up to a constant.

Definition 2.2. Let S be a surface. We assume S is oriented, meaning there exists an
atlas defining S such that the transition maps ϕi ◦ϕ−1

j have a differential which is positive
det(d(ϕi ◦ ϕ−1

j ) > 0.

Remark 2.1. Any Riemann surface is oriented.

Definition 2.3. A complex structure on Riemann surface S compatible with the
orientation is a smooth section j ∈ End(TS) such that j ◦ j = − id and ∀v ∈ TS, (v, jv)
is a direct basis.

For a Riemann surface, multiplication by i:
(
0 −1
1 0

)
defines a complex structure.

Definition 2.4. A Riemannian metric on S is a smooth section of Sym2(T ∗S): it is
an inner product gx on each tangent space TxS, ∀x ∈ S, which is smooth with respect to
x ∈ S in the following way:

If ϕ : R2 → S, 0 7→ m is a local chart in a neighborhood of m ∈ S, ϕ∗g =
n∑
i,j
gijdxidxj,

meaning that, if X =
n∑

i=1
ai

∂
∂xi

and Y =
n∑

j=1
bj

∂
∂xj

are local vector fields, then g(X,Y ) =

n∑
i,j=1

aigijbj.

Two Riemannian metrics g1 and g2 are conformal if ∃λ : S → R+ such that g1 = λg2.
We will say that a Riemannian metric g on S is compatible with the complex structure

if there exists local coordinates in which g = λ(x, y)(dx2+dy2). This condition means that
the complex structure defined by g is the one given by ×i.

Proposition 2.2. Let S be a Riemann surface. Then there exists a Riemannian metric
on S which is compatible with the complex structure.
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Proof. Take holomorphic coordinates ρi : Ui ⊂ C → ρi(Ui) ⊂ S and in each holomorphic
coordinate consider gi = |zi|2 = x2i + y2i and consider a partition of unity ρi: g =

n∑
i=1

ρigi.

On surfaces we have an important result:

Theorem 2.1 (Isothermal coordinates (local)). Let g be a Riemannian metric on a
surface S. Then for any p ∈ S, there exists a local chart ϕ : U ⊂ R2 → ϕ(U) ⊂ S, 0 7→ p,
such that ϕ∗g = λ(x, y)(dx2 + dy2), λ : U → R+.

Lemma 2.1. Let g be a Lorentz metric on a surface S. Then for any p ∈ S, there exists
local coordinates at p, such that g = λ(x, y)(dx2 − dy2).

Proof of the lemma. g1 and g2 two Lorentz metrics are conformal: ∃λ : S → R+ g1 = λg2

iff {v ∈ TS : g1(v) = 0} = {v ∈ TS : g2(v) = 0}. The standard g0 = dx2 − dy2 admits two
line fields of isotropic vectors: ∆1 = {x = y} and ∆2 = {y = −x}.

Consider L1 and L2 the two isotropic lines of g and we want to identify them on ∆1

and ∆2.

Exercise 2.1. X,Y , find local functions f, g such that [fX, gY ] = 0, then there is a local
change of coordinates, ρ∗(fX) = ∂

∂x , ρ∗(gY ) = ∂
∂y .

Proof of the exercise. Note that X(g)
g Y − Y (f)

f X = [Y,X], hence we can solve out f and g.
The existence of x, y is constructed by flow, or by baby version of Frobenius theorem.

Proof of Isothermal coordinates by Gauss. Here we use the convention that

dxdy =
1

2
(dx⊗ dx+ dy ⊗ dy).

Complexify the metric and look to the isotopic lines in the complex domain.

g(x, y) = a(x, y)dx2 + 2b(x, y)dxdy + c(x, y)dy2

and think of it on an open set in C2. The same proof shows that you can rectify (find
local coordinates) the metric on λ(x, y)(dx− idy)(dx+ idy) = λ(x, y)(dx2 + dy2).

g =
1

a
(adx+ (b+ i

√
ac− b2)dy)(adx+ (b− i

√
ac− b2)dy) = ω1ω2.

Then ω1 is a holomorphic 1-form on an open set in C2, Kerω1 defines a family of curves
which are locally given by an equation f(x, y) = constant, Kerω1 = Ker df . There is a
function h : U → C∗, then ω1 = hdf = h(du+ idv).

On R2, ω2 = ω1 = h(du− idv).

g =
1

a
ω1ω2 =

1

a
hh(du+ idv)(du− idv) =

1

a
|h|2(du2 + dv2).

16



Corollary 2.1. Let j ∈ End(TS) such that j◦j = − id. Then there exists local coordinates
in which j is j0 =

(
0 −1
1 0

)
.

Corollary 2.2. Any oriented surface S admits complex structures.

Proof. Consider a Riemannian metric g on S. Consider all oriented local coordinates
where g is λ(x, y)(dx2 + dy2). The transition maps are local diffeomorphisms, preserving
the angles of the euclidien metric and preserving orientation, then they are holomorphic
maps.

Remark 2.2. Similar to the vector space case, on Riemann surface, g1 and g2 will produce
the same complex structure if ∃λ : S → R+ such that g1 = λg2.

Proposition 2.3. (TP1)∗ admits no sections.

Proof. First proof. Let ω ∈ H0(P1, T ∗P1). ω = f(y)dy, where f holomorphic. Then
−f( 1y )

1
y2
dy is holomorphic, hence f ≡ 0 (This proof is similar to Exercise 1.9).

Second proof. ω ∈ H0(P1, T ∗P1) and X ∈ H0(P1, TP1). Then ω(X) ∈ H0(P1,C),
since P1 is compact, ω(X) is constant. Since X has zeros on P1 (Harry ball), the constant
is 0. On the open set where X is nowhere 0, we say ω is 0 everywhere, hence ω is 0 on
X.

Remark 2.3. The second proof shows that a nontrivial line bundle cannot have holomor-
phic forms and holomorphic vector fields at the same time.

2.2 Uniformization of Riemann surface

In this section we assume all the surface to be connected as a priori.

Theorem 2.2 (Riemann). Let U ⫋ C be a simply connected, connected open set. Then
there exists an biholomorphism ϕ : U → {z ∈ C : |z| < 1} = D.

Proof. In the devoir.

Example 2.1. U = H = {z ∈ C : Im z > 0}, then ϕ(z) = z−i
z+i is a biholomorphism

between H and D.

Remark 2.4. By considering zπ/α, every sector is biholomorphic to a half plane.
Given a strip, after a suitable rotation (z 7→ λz), it is horizontal. Consider η 7→ eη

we get a sector.

Remark 2.5. There is not (by Poincaré) ϕ : C → D biholomorphism even if D and C
have the “same” real structure.

Proof. Any holomorphic ϕ : C → D is a constant.
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Theorem 2.3 (Uniformization of Riemann surface, Poincaré). Let S be a Riemann
surface and assume that S is simply connected and connected. Then S is biholomorphic
to P1(C) (when the Riemann surface is compact), or to C, or to D.

Remark 2.6. P1(C) and D don’t have the same real structure, there are not homeomor-
phism since D is not compact. The same reason for P1(C) and C.

Proposition 2.4. Recall
Aut(P1) = PSL(2,C);
Aut(C) = {az + b : a ∈ C∗, b ∈ C} motions;
Aut(D) = PSL(2,R).

Remark 2.7. The biholomorphism gives a conformal map between S and the three basic
model, whose curvature is +1, 0,−1 respectively.

Particular case. Let g be a Riemannian metric on R2/Z2, then g is conformally equiv-
alent to dx2 + dy2 (Find the universal covering).

For the hyperbolic case, the biholomorphic is indeed an isometry (this can be proved by
direct calculation).

Corollary 2.3. Let S be a compact and simply connected, therefore S is diffeomorphic to
S2.

Proof. A simply connected surface is orientable. Furthermore, we can endow it with a
Riemannian metric g. Therefore S is endowed with a complex structure by the theorem
of isothermal coordinate 2.1.

Then there is, by the uniformization theorem 2.3, a biholomorphism ϕ : S → U , where
U = P1(C), C or D. Since P1(C) is the only compact model, we have ϕ : S → P1(C) hence
S is biholomorphic to S2.

Furthermore, this shows that (S, g) is “uniformly” conformal equivalent to S2 with its
canonical metric.

Exercise 2.2. Prove that any isometry that preserves g is in the orthogonal group O(3,R).

Proof. Let f to be the isometry on S2 ⊂ R3. Define F : R3 \ {0} → R3, x 7→ |x| · f( x
|x|),

then extend it continuously to 0. Since S2 ⊂ Im f , F is onto.
f is an isometry on S2, hence it preserves the distance in S2. Note that the distance is

just the angle between two vectors with endpoints in S2, hence f preserves the angles. By
the construction of F , we say 4(0, x, y) and 4(0, F (x), F (y)) are two congruent triangle.
Then

〈F (x), F (y)〉 = 〈x, y〉.

So F also preserves the inner product in R3.

〈F (ax+ by)− aF (x)− bF (y), F (z)〉 = 〈ax+ by, z〉 − 〈ax, z〉 − 〈by, z〉 = 0, ∀x, y, z ∈ R3.

Then we have F is a linear map. Moreover it preserves the inner product, hence F ∈
O(3,R).
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Remark 2.8. The topological result was know before the “uniformization theorem”: Any
simply connected surface is homeomorphic to S2 or R2.

2.3 Complex structure and hyperbolic geometry model

We have three model of hyperbolic geometry.

Aut(D) = {eiθ z − a

1− az
: θ ∈ R, a ∈ D}.

By direct calculation, we say the biholomorphism on D preserves the metric |dz|2
(1−|z|2)2 with

negative constant curvature.
D ∼= H semi-plane model. Aut(H) = StabH(Aut(P1)) ∼= PSL(2,R). H with the

Poincaré metric dx2+dy2

y2
is isometric to (D, dx2+dy2

(1−x2−y2)2
) and Aut(H) preserves this metric.

Consider R2 with the standard orientation, the set of complex structure compat-
ible with the given orientation is

Comp+(R2) = {J ∈ End(R2), J ◦ J = − id, (v, Jv) is an oriented basis,∀v ∈ R2}.

In this case i× v = Jv. We denote the standard example R2 ∼= C by J0 :=

(
0 −1

1 0

)
.

What can we say about the eigenvalues of J? J2 + id = 0 gives that the eigenvalues
of J are ±i. J is similar to J0 in M2×2(C), hence there exists P ∈ SL(2,R) such that
P ◦ J ◦ P−1 = J0.

1. Hyperboloid Model: Comp+(R2) is a homogeneous space for the action of SL(2,R)
by conjugacy. Tr J = 0 and det J = 1, hence

Comp+(R2) = {J =

(
a b

c −a

)
: a, b, c ∈ R,det J = −a2 − bc = 1}.

det J = −a2− bc = −a2− ( b+c
2 )2+( b−c

2 )2. Then det J = 1 defines the “hyperboloid”
in the space {x = a, y = b+c

2 , z = b−c
2 } Given by the equation −x2 − y2 + z2 = 1.

The quadratic form Q = −det J = x2+y2−z2, then the hyperboloid will be Q = −1.

det(PJP−1) = det J , ∀P ∈ SL(2,R) then Q = −det is invariant by the action of
SL(2,R) (PSL(2,R) ∼= O(2, 1)).

Q has (2, 1) as signature. However ∀v ∈ hyperboloid, i.e. Q(v) = −1, we have

Tv(Q
−1({−1}) = v⊥Q.

Now we have that the space of complex structure on R2 is equivalent to a hyperboloid
with the Lorentz metric.

2. Upper half plane model:

Comp+(R2) = {q : R2 → R : q symmetric positive-definite linear functor}/q ∼ λq.
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Set q = ax2+ bxy+ cy2 ∼ x2+ bxy+ cy2 for b, c ∈ R, and we can see that q uniquely
determines and also is uniquely determined by z ∈ C with Im z > 0 (the equation
must have imaginary roots), hence we conclude that the space of complex structure
on R2 is equivalent to the upper half plane (maybe by calculation we say with the
metric dx2+dy2

y2
).

3. Disc model: We can also write g = λ|z+Φz|2, λ > 0, |Φ| < 1 (guarantees that the
main part of g is |z|). Here |Φ| < 1 is because if |Φ| > 1, we have

g = λ|z +Φz|2 = λ|z +Φz|2 = λ|Φ| · |z + 1

Φ
z|2.

Hence g is equivalent to |z+ 1
Φ
z|2 with | 1

Φ
| < 1. And by direct calculation, |Φ| cannot

be 1. Thus Φ gives the model of the disc.

Corollary 2.4. By considering the set of complex structure on R2, we get hyperboloid,
upper half plane and the Poincaré disc as hyperbolic model, with their canonical metric.

2.4 Quotients of the three simply connected Riemann Surface

In this subsection we discuss the classification of Riemann surfaces.
Given S a Riemann surface, therefore S is biholomorphic to S̃/π1(S), where S̃ is the

universal cover of S and π1(S) is a discrete group whose actions on S̃ is biholomorphisms.
This action is properly discontinuous without fixed points. S̃ is indeed a connected

and simply connected Riemann surface and S̃
π−→ S is holomorphic.

Since S̃ is simply connected we can apply the uniformization theorem. There is ϕ :

S̃ → U biholomorphism where U is either P1,C or D.

Case 1 U = P1 (when the universal cover is compact).

We have that S = P1/π1(S), with π1(S) the fundamental group of S that acts on
P1 without fixed points by biholomorphism.

We know that Aut(P1) = PSL(2,C), where every γ = az+b
cz+d ∈ PSL(2,C) admits

at least one fixed point (since there is always a “proper line”, the matrix can be
triangulated). Then π1(S) = {id}, therefore S = S̃ = P1. The unique Riemann
surface that is covered by P1 is P1.

Corollary 2.5. The only Riemann surface which is covered by P1 is itself, due to
there is no biholomorphism map on P1 without fixed point.

Case 2 U = C.

Now S is holomorphic to C/π1(S) where π1(S) acts on C by transformations of
covering that are biholomorphisms. Recall that

Aut(C) = {z 7→ az + b : a ∈ C∗, b ∈ C}.
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If a 6= 1, the transformation z 7→ az + b always admits a fixed point in R: az + b =

z ⇒ z = b
1−a . Then π1(S) ⊂ {z 7→ z + b : b ∈ C}. So π1(S) is a discrete subgroup of

the translation group.

We have only 3 cases for π1(S) (if we have three translations that are rationally
independent, we can prove that there are some actions converging to id, which
contradicting proper discontinuity.)

(i) π1(S) ∼= Z generated by a translation z 7→ z + ω, in which case we have
C/(z 7→ z + ω) ∼= C∗ by exp

(
2iπ z

ω

)
.

(ii) π1(S) ∼= Z2 generated by 2 translations z 7→ ω1, z 7→ ω2 with ω1
ω2

/∈ R.

S is an elliptic curve C/Zω1⊕Zω2, in particular S is biholomorphic to S1×S1.
C/Zω1+Zω2 is biholomorphic to C/Z⊕τZ with Im τ > 0. Moreover, C/Z⊕τZ
is biholomorphic to C/Z⊕ τ ′Z iff ∃g ∈ PSL(2,Z) such that gτ = τ ′.

(iii) π1(S) = {id}. Then S ∼= C.

Corollary 2.6. If S̃ ∼= C then π1(S) acts on C by translation. S = C/π1(S) admits
a flat Riemannian metric by |dz|2 = dx2 + dy2 (covariant by translation) and it is
compatible with the complex structure.

Case 3 U = D. Hyperbolic geometry.

S̃ is holomorphic to D, also to H. In this case S ∼= S̃/π1(S) where π1(S) is a
discrete subgroup that acts on S̃ by biholomorphisms and the action is proper and
discontinuous. Therefore π1(S) preserves the hyperbolic metric of S. This hyperbolic
metric, induces a Riemannian metric on S, compatible with the complex structure
with negative constant curvature.

Corollary 2.7. If S is a (complete?) Riemann surface, then S admits a complete Rie-
mannian metric of constant curvature compatible with the complex structure.

More precisely, this metric h is a positive constant curvature if S̃ ∼= P1, 0 if S̃ ∼= C
and negative if S̃ ∼= D.

Corollary 2.8. If S is an orientable surface, any Riemannian metric on S is equivalent
to a complete Riemann metric with constant curvature.

In the case where S̃ = P1 we saw that π1(S) = {1}. When S̃ = C, we saw that
π1(S) = Z (S = C∗) or π1(S) = Z2 (S = C/Z⊕ τZ).

Results on hyperbolic case

From the discussion above, we’ve seen that the structure for the formal two cases is very
easy, and our rich structure is in the last case.

Now what can we say about π1(S) when S̃ = D?
For a Riemann surface that is compact if genus g ≥ 2, we know that π1(S) is not

abelian (a topological result), then S̃ = D.
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Corollary 2.9. Any compact Riemann surface of genus g ≥ 2, is covered by D. In
particular, admits a complete Riemannian metric of curvature −1.

If S̃ = D, S = S̃/π1(S), and π1(S) acts by biholomorphisms on S̃ = D preserving the
hyperbolic metric and without fixed point.

Remark 2.9. Any action of a discrete group that preserves a metric is proper and dis-
continuous.

How can we know that a discrete subgroup Γ = π1(S) ≤ PSL(2,R) = Aut(H) acts
with a compact quotient and without fixed points?

Proposition 2.5. Γ = π1(S) ≤ Aut(H) acts without fixed point iff Γ is without torsion
(If γ ∈ Γ, n ≥ 1 such that γn = id then γ = id). Γ acts on H with a compact quotient iff
PSL(2,R)/Γ is compact.

Proof. First we say that H = PSL(2,R)/ Stab(i). Moreover, for matrix

(
a b

c d

)
∈

PSL(2,R), it fix i when ai+b
ci+d = i, that is,

a = d, b = −c,with a2 + b2 = 1 ⇒ Stab(i) ∼= S1.

Thus
H = PSL(2,R)/ Stab(i) ∼= PSL(2,R)/S1,

and the map PSL(2,R) → H is a fiberation whose fiber as a circle. We identify this
fiberation with the unit tangent bundle (tangent vectors with norm 1) for the hyperbolic
metric.

Since the stabiliser is a rotation, we say H is a symmetric space, that is for any x, y ∈ H,
v1 ∈ TxH and v2 ∈ TyH, with |v1| = 1 and |v2| = 1, then there is g ∈ PSL(2,R) such
that gx = y and dgxv1 = v2. This shows that the action of PSL(2,R) on PSL(2,R) is
transitive.

PSL(2,R)/Γ is the unit tangent bundle of H/Γ, hence PSL(2,R)/Γ is compact iff H/Γ
is compact.

If Γ acts without fixed point, then obviously it has no torsion. Let’s assume that Γ is
without torsion, we shall show that Γ acts without fixed points in H. In fact, if γ admits
a fixed point, i.e. there is x0 ∈ H, γ · x0 = x0, then ∀n ∈ Z, γn · x0 = x0.

Let’s consider in the model D and assume x0 = 0, we must have γ−n ∈ eiθ, ∀n ∈ Z.
Since {γn : n ∈ Z} must be a discrete subgroup of S1, hence it is a finite set, then ∃N ∈ N
such that γN = 1. Then γ is an element of torsion.

Remark 2.10. 2 quotient spaces of D : D/Γ1,D/Γ2 with Γ1 and Γ2 discrete subgroups
without torsion are biholomorphic iff ∃ϕ ∈ PSL(2,R) such that ϕ ◦ Γ1 ◦ ϕ−1 = Γ2.

Proof. A biholomorphism from D/Γ1 to D/Γ2 lifts to a biholomorphism of the universal
cover D with corresponding to an element of PSL(2,R) that conjugate Γ1 and Γ2.
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2.5 Some statements and the proof of uniformization theorem I

Theorem 2.4 (Gauss, Row-Liditenstewi). S is a surface and j ∈ H0(End(TS)) is an
almost complex structure, then ∀s ∈ S, there is ϕ : (v, s) 7→ (ϕ(v) ∈ C, 0) a local diffeo-
morphism between an open neighborhood U of s in S and ϕ(U) an open neighborhood of 0
in C such that ϕ(s) = 0 and dϕ(j · v) = idϕ(v), ∀v ∈ TU .

Remark 2.11. This is a theorem of local integrability of almost complex structures in
Cω-case that we proved in Theorem 2.1.

Recall that on a surface S, if S is endowed with an orientation, the almost complex
structure j is given by a Riemannnian metric g (and λ · g with λ : S → R+ defines the
same j).

Theorem 2.5 (Poincaré-Rorbe). Let j be an almost complex structure on a simply con-
nected surface S̃. Then there is a global diffeomorphism ϕ : S̃ → M , where M is either
P1,C, D, such that dϕ(j · v) = idϕ(v), ∀v ∈ T S̃.

Recall that the space of complex structure on R2 = Hyperbolic space. If g is a quadratic
form on R2 ∼= C,

• g = ax2 + 2bxy + cy2, ac − b2 > 0, a, c > 0. This gives the hyperboloid model

det

(
a b

c −a

)
= −a2 − bc = 1. g = a(x+ ρy)(x+ ρy).

• g = a · |x+ ρy|2, a > 0. Im ρ > 0. ρ gives the model of the upper-half plane.

• g = λ|z +Φz|2, λ > 0, |Φ| < 1. Φ gives the model of the disc.

If U ⊂ C is an open set in C, any almost complex structure on U is defined by the
conformal class of a Riemannian metric g = λ|dz +Φdz|2 with Φ : U → D.

Let ω = dz+Φdz ∈ Ω1(U,C), it is a differential form of degree 1 which defines j by the
formula ω(j · v) = iω(v),∀v ∈ TU . In the case Φ = 0, the ω gives the standard complex
structure given the inclusion U ⊂ C. By direct calculation, we have

j
∂

∂z
= i

1 + |Φ|2

1− |Φ|2
∂

∂z
+

−2iΦ

1− |Φ|2
∂

∂z
.

Remark 2.12. If f : U → C is a C∞-function, ω and fω define the same almost complex
structure.

In order to prove the local integrability of j, one should find a local diffeomorphism
Ψ : V ⊂ U → Ψ(V ) in C such that f ·ω = dΨ. Indeed, in this case dΨ(j · v) = fω(j · v) =
ifω(v) = idΨ(v). By Poincaré lemma, we just need to find f such that f · ω is closed.

∃f,Ψ : U → C such that fω = dΨ in a neighborhood of a given point iff there exists
f : U → C such that d(fω) ≡ 0.

fω = f(dz +Φdz) = fdz + (fΦ)dz.
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Then d(fω) = 0 iff
∂f

∂z
=
∂(fΦ)

∂z
,

this is called Beltrami equation. Moreover, Ψ is a local diffeomorphism iff f does not
vanish.

Theorem 2.6 (Isothermal coordinate theorem). Let U ⊂ C and an almost complex
structure on U given by a map Φ : U → D (j is define by the condition that dz + Φdz ∈
Ω1(U,C) is C-linear). We can find a coordinate Ψ : V → Ψ(V ) with V ⊂ U ⊂ C such that
dΨ(j · v) = idΨ(v). It is equivalent to find a solution f of Beltrami equation ∂f

∂z = ∂(fΦ)
∂z

defined on V and such that f(v) 6= 0 for all v ∈ V .

Remark 2.13. To make dz +Φdz preserve the orientation, we need |Φ| < 1.

Lemma 2.2 (Technical lemma). Let ν(z, t) : R2/Z2 × [0, 1] → D be a smooth function
such that ν(z, 0) ≡ 0, then there exists a smooth function f : R2× [0, 1] such that ∂f

∂z = ∂fν
∂z

and f(z, t) is not identically zero for any t ∈ [0, 1] and f(z, 0) ≡ 1.

Remark 2.14. The method is for any unknown Φ : R2/Z2 → D, consider ν = tΦ.
For any t ∈ [0, 1] the almost complex structure is given by ωt = dz + ν(z, t)dz.

Lemma 2.3 (Strong technical lemma). Moreover, in technical lemma we have f(z, t)
does not vanish for any t.

Logic:

Technical lemma ⇒ Isothermal coordinate theorem.

Technical lemma

Isothermal coordinate theorem
⇒ Strong Technical lemma.

Strong Technical lemma ⇒ Uniformization theorem.

Corollary 2.10 (Corollary of the strong technical lemma). Let j any almost complex
structure on R2/Z2. Then there exists a global diffeomorphism Ψ : R2/Z2 → C/Λ, with Λ

some lattice in C such that dΨ(j · v) = i · dΨ(v), for any v ∈ T (R2/Z2).

Proof. Let j be the almost complex structure and we can consider by taking R2/Z2 ∼= C/Z2

that j is given by a ν : C/Z2 → D such that dz+νdz is j−C-linear. We consider the path
of almost complex structure given by tν(z), ∀t ∈ [0, 1]. This relates our j to the standard
complex structure on C/Z2 given by ν ≡ 0 and ω = dz.

By the strong technical lemma, there exists f(z, t) with z ∈ C/Z2 and t ∈ [0, 1] such
that ∂f

∂z = ∂(f ·νt)
∂z for any t ∈ [0, 1]. Moreover, f(·, t) does not vanish for any t ∈ [0, 1].

∀t ∈ [0, 1], f(z, t)·ω where ω = dz+tνdz is closed. In particular, for t = 1, d(f(z, 1)·ω)
is closed. This implies first that locally ∃Ψ : U ⊂ C/Z2 → Ψ(V ) ⊂ C such that dΨ =
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f(z, 1) ·ω, meanings that our j is locally integrable (we have proved isothermal coordinate
theorem for j).

Pull back the closed form f(z, 1) · ω to R2 ∼= C, and denote the pull-back by ω̃ =

f(z, 1) · ω. There will be Ψ : C → C such that ω̃ = f(z, 1)ω = dΨ, meaning that Ψ is a
diffeomorphism (since f(z, 1) does not vanish, dΨ does not vanish) which conjugate the
pull-back of j on C to ×i on Ψ(C). We will show now that Ψ(C) = C. Ψ sends ω̃ on dz

(that is Ψ∗(dz) = dΨ = ω̃).
Ψ is an isometry in between |ω̃|2 and |dz|2 = dx2+dy2. Riemannian metrics on compact

manifolds are complete, then |f(z, 1)ω|2 is complete on C/Z2, then |ω̃|2 is complete on
C, hence Ψ is a cover and since the target is simply connected, Ψ is a diffeomorphism
between C and C. This implies that ψ descends on a biholomorphism between (C/Z2, j)

and C/Λ, for some lattice Λ.
Notice that f(z, 1)ω is a holomorphic form on (C/Z2, j) since it is C-linear and closed.

We proved that a Riemann surface with a non vanishing holomorphic form is C/Λ.
A different point view, f(z, 1)ω holomorphic gives a non vanishing holomorphic vector

field X on S. Then ϕ′(t) = X(ϕ(t)) gives C/ Stab → (C/Z2, j) diffeomorphism.

Corollary 2.11. Let T = R2/Z2 endowed with some Riemannian metric g. Then there
is a flat metric on R2/Z2conformal to g.

Proof. In the previous proof we showed that there exists a conformal diffeomorphism
between (R2/Z2, g) and (C/Λ, |dz|2). Ψ : R2/Z2 → C/Λ is such that Ψ∗(|dz|2) = λg.

The previous corollary proves isothermal coordinate theorem.
Let 0 ∈ U ⊂ C endowed with an almost complex structure given by ν : U → D.

Restrict ν to a D(O, ε) such that |ν|∞,D(O,ε)
≤ δ < 1. Extend ν a smooth function being

0 on U \ D(O, 2ε). Extend ν as a bi-periodic function defined of R2/Z2. Applying the
previous corollary to R2/Z2 with the bi-periodic almost complex structure. It was proved
that this is conjugated to the standard C/Λ. In particular, ν on D(O, ε) is conjugated to
the standard complex structure on same disk ⊂ C.

How to deduce uniformization theorem from the uniformization of almost complex
structures on the torus?

We assume that the topological classification is known, meaning that the universal
cover of a surface is diffeomorphic to P1 ∼= S2 or to R2. We reduce the problem to the case
where the universal cover is diffeomorphic to R2.

Indeed, assume that the universal cover is S2. We remove a point p, now the complex
structure on S2 \ {p} (diffeomorphic to R2) is either D or C

Ψ : (S2 \ {p}, j) biholomorphism−−−−−−−−−−→ D or C.

The target of Ψ cannot be D, because in this case Ψ is bounded and by Riemann moving
singular theorem, Ψ extends to Ψ̃ : S2 → D, a contradiction with maximal principle.

25



Then Ψ : S2 \ {p} → C ⊂ P1 which is a biholomorphism. Notice that Ψ is a homeo-
morphism, so it sends s a neighborhood of P in S2 to a neighborhood of ∞ in P1. Then
coordinate of P1 at the infty is 1

z , then 1
Ψ is bounded in the neighborhood of P . Ψ extends

to a holomorphic neighborhood form S2 to P1 which has a non zero derivative in P since
Ψ is injective.

Hence we can only consider the case of R2.
Let us now consider the case where R2 is endowed with an almost complex structure

γ : R2 ∼= C → D(O, 1). We want to show that there exists a biholomorphism Ψ : (R2, ν)

and D or C.
Consider an exhaustion of R2 by relatively compact sets

S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ R2, Sn ⊂ Sn+1, Sn compact,
∪
n∈N

Sn = R2.

We can choose Sn to be simply connected. Consider ν|Sn = νn defines a bounded almost
complex structure on Sn (there is δn < 1 s.t. |ν|∞,Sn

≤ δn < 1).
As in the proof of isothermal coordinate theorem, we extend the complex structure

(Sn, νn) to a bi-periodic complex structure on some torus R2/Λ.
Our theorem of classification of almost complex structure R2/Λ, there is Ψ : (Sn, νn) →

(Ψ(Sn),×i), and Ψ is a biholomorphism with Ψ(Sn) a simply connected open set in C.
By the Riemann theorem (see homework), Ψ(Sn) is biholomorphic to the unitary disc

D. So there exists a biholomorphism Ψn : (Sn, j) → D (with standard complex structure).
Moreover, we can assume that O ∈ Sn, Ψn()) = O ∈ D and moreover we multiply Ψn by
λn = 1

Ψ′(O) such that Ψ̃n = λn ·Ψn : (Sn, j) → λnD is such that Ψ̃(O) = O and Ψ̃′
n(O) = 1.

Fix k ∈ N and look for Ψ̃n ◦ Ψ−1
k : D → λnD, (Ψ̃n ◦ Ψ−1

k )(O) = O and Ψ̃n ◦ Ψ−1
k

have all the same derivative at O. Then it is a normal family in the Montel sense and we
can have a subsequence which converges. We find the uniformization map by a diagonal
extraction: the limit will be a holomorphic diffeomorhism from (R2, j) to an open set in
C (which is simply connected). By Riemann theorem. it is either D or C.

Diagonal extraction: (Ψ̃n)n≥1 is a normal family on Sk ⊂ Sk+1 ⊂ · · · .

Proposition 2.6. Technical lemma + isothermal coordinate theorem, imply strong tech-
nical lemma.

Proof. Let us consider f(z, t) the solution fo the Beltrami equation. We show that {t ∈
[0, 1] : f(z, t) vanishes somewhere on R2/Z2} is a closed and open set in [0, 1]. Since
f(z, 0) ≡ 1, then this set is not [0, 1], it is ∅.

Let us first show that this set is closed. Let tk ∈ [0, 1] such that there is zk ∈ R2/Z2

such that f(zk, tk) = 0 and lim
k→∞

tk = t∞ ∈ [0, 1]. Then (zk) ⊂ R2/Z2, then there is
σ : N → N such that lim

k→∞
ztσ(k)

= z∞ ∈ R2/Z2. Then f(z∞, t∞) = 0, hence t∞ is in the
set which is closed.

Now we prove it is also an open set. Let to be such that f(z0, t0) = 0. We can assume
(by changing z0) that f is not identically zero in the neighborhood of z0. By isothermal
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coordinate theorem, we know that the complex structure ν(z, t0) is integrable. In local
holomorphic coordinates f(z, νo)(dz + ν(z, t0)dz) is a holomorphic form (it is closed and
C-linear). In local coordinate w, is of the form wnh(w)dw, h holomorphic h(0) 6= 0 and
w(z0) = 0. When we change t0 → t, the order of vanishing of this section is still n, hence
f(z, t) vanishes for t closed to t0.

Exercise 2.3. Take a 2 : 1 manifold cover of P1(C) above for 4 points: {a, b, c,∞}, then
the Riemann surface is biholomorphic to C/Λ.

Proof. ω = dz√
(z−a)(z−b)(z−c)

pull-back to a holomorphic form which does not vanish.

The coordinate above the point a will be v such that z−a = v2. To test what happens
at v = 0 (z = a). We have

dz√
(z − a)

=
d(v2)

v
= 2v

dv

v
= 2dv,

so on the cover the holomorphic 1-form do not have singularity above z = a. At the ∞ in
P1, z = 1

u2 , and
dz√
z3

=
−2u−3

u−3
= −2du.

Remark 2.15. For a Riemann surface which has a hole, if there is ω holomorphic 1-form.
We can find γ1 and γ2 two closed path such that

∫
γ1
ω = a ∈ C\{0} and

∫
γ2
ω = b ∈ C\{0}.

Then
∫ z
0 ω maps S to C/Σ.

2.6 The proof of uniformization theorem II

Lemma 2.4. Let γ(z, t) : T 2 × [0, 1] → C, |ν(z, t)| < 1 and ν is smooth (this defines
a family of complex structures on T 2 such that dz + ν(z, t)dz is C-linear). We assume
that ν(z, 0) ≡ 0. Then there exists a solution f(z, t) to Beltrami equation ∂

∂zf = ∂
∂z (fν),

∀z ∈ T 2 and t ∈ [0, 1] s.t. f(z, 0) = 1, and f(z, t) is not constant 0 in z, ∀t ∈ [0, 1].
We will see later that f(z, t) does not vanish for any t ∈ [0, 1].

Proof. Since f(z, 0) ≡ 1, any function f(z, t) satisfying

∂z ḟ − (∂z ◦ ν)ḟ = (∂z ◦ ν̇)f, f(z, 0) ≡ 1,

is a solution of Beltrami equation.
Here ḟ and ν̇ are partial derivative with respect to t and operations ∂z ◦ ν are multi-

plication by ν followed by ∂
∂z .

T 2, z = x1+ ix2, ∂
∂z and ∂

∂z admit eigenvectors which are ln(x) = ei(n1·x1+n2·x2), where
n = (n1, n2) ∈ Z, with eigenvalues

λn =
1

2
(in1 + n2), λ′n =

1

2
(in1 − n2).

Then |λn| = |λ′n| and λ′n = −λn.
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Corollary 2.12. There exists a unique unitary operation in L2(R2/Z2) such that U ◦ ∂
∂z =

∂
∂z ◦ U = ∂

∂z .

Proof of the corollary. Define U as the operator which admits ln(x) as eigenvectors with
eigenvalues λ

λ′ (with modules 1).
Moreover, it commutes with partial derivatives and we can treat U as ∂−1

z ◦ ∂z.

We will solve the equivalent equation

(id−U ◦ ν)(ḟ) = (U ◦ ν̇)(f).

Then it’s equivalent to solve the following ordinary differential equation in a Banach space

ḟ = (id−U ◦ ν)−1(U ◦ ν̇)(f),

with initial value f(z, 1) ≡ 1.
It is enough to show that the norm of the linear operators is uniformly bounded w.r.t.

t. Then this will imply that there is a unique solution of the ODE, f(z, t) ∈ L2(T 2) s.t.
f(z, t) is trivial for any t.

Notice that |ν(z, t)| < 1, then ‖ν(z, t)‖ ≤ δ < 1 for any z ∈ T 2 and t ∈ [0, 1]. Then
‖U ◦ ν‖L2 ≤ δ < 1, which gives that id−U ◦ ν is invertible and

(id−U ◦ ν)−1 =

∞∑
k=0

(U ◦ ν)k ⇒ ‖(id−U ◦ ν)−1‖L2 ≤
∞∑
k=0

δk =
1

1− δ
.

Also |ν̇| < δ′ then ‖U ◦ ν̇‖L2 ≤ δ′, hence

‖(id−U ◦ ν)−1(U ◦ ν̇)‖L2 ≤ δ′

1− δ
.

Now we still have a problem to prove the f ∈ L2(L2) is actually smooth. We can
prove the operator is uniformly bounded w.r.t. the norm of the Banach space Hs. Since∩
s≥0

Hs(T 2) = C∞(T 2), we say f is smooth.

Definition 2.5. The Sobolev space

Hs(T 2) = {f ∈ L2(T 2) : all partial derivatives of order ≤ s are in L2 (in the sense of distributions)}

and it is also {f ∈
∑
n,m

νn,me
i(nx+my) : (1 + n2 +m2)sun,m ∈ l2}.

The final part is to prove that f(z, t)does not vanish.
It is enough to prove that isothermal coordinate theorem because in this case we have

seen that technical lemma implies strong technical lemma.

Proposition 2.7. The technical lemma implies isothermal coordinate theorem.
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Proof of the proposition. We can start with an almost complex structure defined on 0 ∈
U ⊂ C and determined by µ : U → D(0, 1). we can assume that µ(0) = 0 (this means that
by a linear conjugacy j(0) = j0). We can assume also that ‖ν‖∞,C3 is small by rescaling
by a homotheties λ < 1 and restricting the definition domain ((f(λx)′ = λf ′(λx), by
choosing λ small enough, the derivative can be small enough).

We extend smoothly a function µ on R2/Z2 and in order to have the same notations as
in the technical lemma we denote by ν(z, t) = t·µ. ν(z, 0) is the standard complex structure
and γ(z, q) is our almost complex in a small neighborhood of 0 which was extended on
R2/Z2.

There is a solution f(z, t) of the Beltrami equation. In particular f(z, 1)(dz+ν(z, 1)dz) =
f(z, 1)(dz + µdz) is closed.

In order to prove isothermal coordinate theorem, it is enough to prove that f(0, 1) 6= 0.
Because then, by continuity, in the neighborhood of 0, we have f(x, 1) does not vanish.
Then f(x, 1)(dz + µdz) = dΨ and Ψ is a diffeomorphism in the neighborhood of 0. In the
coordinate Ψ, the complex structure given by µ is the standard one.

Our f(z, t) is solution of ḟ = (id−U ◦ ν)−1(U ◦ ν̇)(f). Notice that for the initial value
(f(z, 0) ≡ 1), our solution is also f(z, t) = (1− U ◦ ν)−1(1). Indeed, t = 0, we verify that
f(z, 0) ≡ 1 ≡ id(1) ≡ 1, using d(A−1)(H) = −A−1HA−1, we have

∂f(z, t)

∂t
= (id−U ◦ ν)−1 ◦ (U ◦ ν̇) ◦ (id−U ◦ ν)−1(1)

= (id−U ◦ ν)−1 ◦ (U ◦ ν̇)(f(z, t))

We prove that for ‖u‖∞,C3 small enough, (id−t ◦ U ◦ µ)−1(1) is closed to 1 in the
H3-topology. If two functions are close in H3-topology, they are closed in C0-topology,
hence f(z, t) does not vanish.

C3(T 2)
C0

−−→ H3(T 2);

u 7→ (id−t ◦ U ◦ µ)−1(1).

Definition 2.6 (Almost complex structures in higher dimension). Let X be a real manifold
and j ∈ H0(X,End(TX)) s.t. j2 = − id. This implies that for each x ∈ X, TxX admits
a complex structure given by ∀v ∈ TxX, i · v = j(x) · v.

This implies dimX is even, because det(j2) = (−1)dimX .

TX is then a complex vector bundle, but not always a holomorphic vector bundle.

TX ⊂ TXC = TX ⊗ C.

Here the local sections of TX ⊗ C are X + iY , where X,Y are local section of TX.
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If dimX = 2n, then TX⊗C has complex rank 2n. j extends as H0(X,End(TX⊗C)),
we still have j2 = − id. j(x) ∈ End(TxX ⊗ C) has 2 eigenvalues which are ±i. Consider
T
(1,0)
x X the eigenspace of the eigenvalue i and T (0,1)

x X the the eigenspace of the eigenvalue
−i. Then TX ⊗ C = T

(1,0)
x X ⊕ T

(0,1)
x X.

Example 2.2 (Standard example). Let X be a complex manifold, then ×i is well-defined
in local holomorphic coordinates and gives a j ∈ H0(X,End(TX)) which does not de-
pend on the local coordinates and it is defined intrinsically on X. In holomorphic local
coordinates

(z1 = x1 + iy1, z2 = x2 + iy2, · · · , zn = xn + iyn),

j(
∂

∂x1
) =

∂

∂y1
, j(

∂

∂y1
) = − ∂

∂xn
.

In this case, TX ⊗ C = T (1,0)X ⊕ T (0,1)X, where T (1,0)X is the subspace where j acts by
the eigenvalue i and it is generated in those local coordinates by( ∂

∂x1
− i

∂

∂y1
,
∂

∂x2
− i

∂

∂y2
, · · · , ∂

∂xn
− i

∂

∂yn

)
=
( ∂

∂z1
,
∂

∂z2
, · · · , ∂

∂zn

)
.

T (1,0)X admits the structure of a holomorphic vector bundle isomorphic to the holomorphic
tangent bundle of X.

Moreover, T (0,1)X is generated in local holomorphic coordinate( ∂

∂x1
+ i

∂

∂y1
,
∂

∂x2
+ i

∂

∂y2
, · · · , ∂

∂xn
+ i

∂

∂yn

)
=
( ∂

∂z1
,
∂

∂z2
, · · · , ∂

∂zn

)
= T (1,0)X.

Question: If X is a real manifold of dim2n, and j ∈ H0(X,End(TX)) s.t. j ◦ j =

− id. Does there exists local coordinates in X such that j reads in those coordinates as
0 −1
1 0

...
0 −1
−1 0

.

Remark 2.16. If such local coordinates do exists at each point of X, thus the transition
maps have a differential which commutes with ×i, then the transition maps form a holo-
morphic atlas and X has the structure of a complex manifold. For which T (1,0)X is the
holomorphic tangent bundle TX and T (0,1)X = T (1,0)X = TX.

More concretely, one wants to find in the neighborhood of any point p ∈ X, an open
set p ∈ U ⊂ X and ψ : U → ψ(U) ⊂ Cn such that dψ ◦ j = i× dψ. In this case all (ψ,U)

will form a holomorphic atlas of X. Such a j is called integrable almost complex
structure.

Integrability condition for almost complex structure:

Theorem 2.7 (Newlander-Nirenberg). Let X be a real manifold endowed with an almost
complex structure j. Then j is integrable if and only if

[T (0,1)X,T (0,1)X] ⊂ T (0,1)X.

Since we have seen that T (1,0)X = T (0,1)X, this condition is equivalent with [T (1,0)X,T (1,0)X] ⊂
T (1,0)X
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This condition is satisfied if X is a complex manifold because T (0,1)X is generated by
vector fields X + i · jX and

[X1 + ijX1, X2 + ijX2] = · · · = (2[X1, Y1]) + ij(2[X1, Y1]).

(Exercise, since j is constant matrix, we have [jX, Y ] = j[X,Y ]).

Proof of Newlander-Nirenberg theorem in the case where j is real-analytic. j can be extended
as a ĵ ∈ H0(Û ,End(TÛ) ∼= C2n) such that ĵ2 = − id.

Now define EC as being the eigenspace of (−i) in C2n, dimCEC = n.
Steps of the proof.
1. Show that [EC, EC] ⊂ EC.
2. Prove Frobenius theorem saying that: if X is a complex manifold of dimension

n, and E ⊂ TX is a holomorphic sub-bundle of rank k, such that [E,E] ⊂ E, then for
any x ∈ X, there exists an open neighborhood x ∈ W ⊂ and a holomorphic submersion
ψ : W → ψ(W ) ⊂ Cn−k s.t. Eu = Ker dψ(u), for any u ∈ W . This means that locally E
coincide with the tangent space of the fibers of a fibration.

3. Apply Frobenius theorem of EC (of rank n) and find local submersion ψ : Ũ ⊂
C2n → Cn and prove that ψ|U : U → Cn is a diffeomorphism and dψ ◦ j = i ◦ dψ.
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3 Sheaf theory

3.1 Dolbeault complex

M a complex manifold with TM ⊗ C = T (1,0)M ⊕ T (0,1)M .
Dual decomposition ΩM⊗C = Ω(1,0)⊕Ω(0,1). The forms in Ω(1,0) are locally

∑
i
fi(z1, · · · , zn)dzi,

where fi isa smooth function and forms in Ω(0,1 are locally
∑
i
gi(z1, · · · , zn)dzi, where gi

is a smooth function.
Ωk
M ⊗ C =

⊕
p+q=k

Ωp,q, where sections of Ωp,q are locally given by i = (i1, i2, · · · , ip),

j = (j1, j2, · · · , jn), ∑
i,j

fijdzi ∧ dzj ,

where fij is a smooth function, dzi = dzi1 ∧ · · · ∧ dzip and dzj = dzj1 ∧ · · · ∧ dzjp .
If α =

∑
i,j
fijdzi ∧ dzj ∈ Ωp,q, then

dα =
∑
i,j

(dfij) ∧ dzi ∧ dzj ∈ Ωp+1,q ⊕ Ωp,q+1,

We will say that d = ∂ + ∂, where ∂α ∈ Ωp+1,q and ∂α ∈ Ωp,q+1.
In particular if f ∈ Ω0,0, then df = ∂f + ∂f . Then f is holomorphic iff ∂f = 0. We

say α ∈ Ω1,0 is holomorphic iff ∂α = 0.

Proposition 3.1. Properties of operators ∂, ∂:
i) ∂(α ∧ β) = ∂α ∧ β + (−1)degαα ∧ ∂β.
ii) ∂(α ∧ β) = ∂α ∧ β + (−1)degαα ∧ ∂β.
iii) ∂ ◦ ∂ = 0, ∂ ◦ ∂ = 0, ∂ ◦ ∂ + ∂ ◦ ∂ = 0.

De Rham complex Ωk = {smooth forms of degree k}

0 → Ω0 d−→ Ω1 d−→ Ω2 d−→ · · · d−→ Ωn d−→ 0, d ◦ d = 0.

Dolbeault complex

0 → Ω0,0 d−→ Ω0,1 ∂−→ Ω0,2 ∂−→ · · · ∂−→ Ω0,n ∂−→ 0, ∂ ◦ ∂ = 0.

For de Rham operator, we have Poincaré lemma: α ∈ Ωk(U) with k ≥ 1, dα = 0, then
there is β ∈ Ωk−1(V ) s.t. dβ = α for some V ⊂ U .

For Dolbeault operator, we have Poincaré lemma: α ∈ Ω0,q(U) with q ≥ 1, ∂α = 0,
then there is β ∈ Ω0,q−1(V ) s.t. ∂β = α for some V ⊂ U .

Moreover, ∂-operator extends to the following situation. Let M be a complex manifold
and E → M a holomorphic vector bundle of rank n. We define Ωp,q(E) = Ωp,q

M ⊗ E and
an operator

∂ : Ωp,q(E) → Ωp,q+1(E),
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s.t. for a holomorphic trivialization E|U = U × Cn with local sections (s1, · · · , sr) of
Ωp,q ⊗ E, then we define

(∂s1, · · · , ∂sr) ∈ Ωp,q+1(U).

This does not depend on the holomorphic trivialization and gives an operator ∂ s.t. ∂◦∂ =

0, and we have
0 → Ω0,0(E)

∂−→ Ω0,1(E)
∂−→ · · · ∂−→ Ω0,n(E)

∂−→ 0,

and the kernel of Ω0,0(E)
∂−→ Ω0,1(E) are the holomorphic sections of E.

3.2 Sheaves and sheaf cohomology

This is a tool to deal with gluing problem: going from local data to global data.

Example 3.1. Let X be a Riemann surface and P1, · · · , Pr, Q1, · · · , Ql points on X and
n1, · · · , nr ∈ N, m1, · · · ,ml ∈ N. Mittag-Leffler Question: Does there exists on X

meromorphic function which admits polos of order at most ni at Pi and zeros of oder at
least mi at Qi?

Example 3.2. Another question is that: Does vector bundles admit global sections?

Let X be a Riemann surface (but the theory could be developed in more general
context of topological spaces).

Definition 3.1. A pre-sheaf F of abelian groups over X (or vector spaces) is the fol-
lowing data:

For each open set U ⊂ X, we have a group (F(U)) (or a vector space) and for each
pair of open sets V ⊂ U ⊂ X, we have a morphism (called the restriction morphism)
ρVU : F(U) → F(V ) with the properties: (i) F(∅) = 0, (ii)ρUU = id, (iii)ρWU = ρWV ◦ ρVU , for
any W ⊂ V ⊂ U ⊂ X.

F(U) are called the sections of F over U . s ∈ F(U) is called a section of F over U .
s ∈ F(X) is called a global section.

Definition 3.2. A pre-sheaf F is a sheaf iff for any open set U ⊂ X and any covering
of U by open sets Ui: U =

∪
i
Ui, we have that the following is an exact sequence

0 → F(U)
α:(ρ

Ui
U )

−−−−→
∏
i

F(Ui)
β:ρ

Ui∩Uj
Ui

−ρ
Ui∩Uj
Uj−−−−−−−−−−−→

∏
i,j

F(Ui ∩ Uj).

Pre-sheaf definition: β ◦ α = 0; 1st axiom of sheaves: α injective; 2nd axiom of sheaves:
Imα ⊃ Kerβ.

This means that if U =
∪
i
Uα and sα ∈ F(Uα) s.t. ρ

Uα∩Uβ

Uα
sα = ρ

Uα∩Uβ

Uβ
sβ, for any

α, β < 1 s.t. Uα∩Uβ 6= ∅, then there exists a unique s ∈ F(U) such that ∀α ∈ I, ρUα
U s = sα.
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Definition 3.3. For P ∈ X the fibers of F in P is FP = lim−→
U∋p

F(U). FP is the space

of germs of sections at P : s ∈ F(Ux) and s′ ∈ F(Vx) with Ux, Vx being open sets and
x ∈ Ux∩Vx, we will say s ∼ s′ if there is an open set x ∈Wx ⊂ Ux∩Vx and ρWx

Ux
s = ρWx

Vx
s′.

The space of equivalence classes is FP .

Example 3.3. X a Riemann surface and O the sheaf of holomorphic functions on X,
Fp

∼= C[z] the space of convergent power series at 0.

Example 3.4. X a Riemann surface and P ∈ X, we define the sky-scraper sheaf in the
following way:

F(U) =

C, P ∈ U

0, P /∈ U
, ρVU =

id, P ∈ V

0, P /∈ V
, FQ = 0, if Q 6= P, FP = C.

Example 3.5. E the sheaf of smooth functions. E(U) is the vector space of smooth func-
tions on U . E1 the sheaf of smooth 1-forms. Ek the sheaf of k-forms. E1,0 the sheaf of
smooth (1, 0)-forms and E0,1 the sheaf of smooth (0, 1)-forms.

Z1 the sheaf of closed 1-forms and Ω the sheaf of holomorphic forms (type (1, 0) and
closed). M the sheaf of meromorphic functions. E∗ the sheaf of non-vanishing smooth
functions. C∗ the sheaf of non-vanishing continuous functions. C the sheaf of locally
constant functions. R the sheaf of locally constant functions with real value. Z the sheaf
of locally constant functions with integer value.

Definition 3.4 (Morphisms of sheaves). X a Riemann surface. If F and G are sheaves
of abelian groups (or vector spaces) over X. A morphism from F to G is the data:

For any U ⊂ X an open set, there exists a group homomorphism from F(U) into
G(U), called fU with the compatibility condition: if V ⊂ U the following diagram should
commute

F(U) G(U)

F(V ) G(V )

fU

ρVU ρVU

fV

.

Remark 3.1. If U =
∪
i∈I

Ui, fU is completely determined by fUi if they are defined in

compatible way.

Example 3.6. Plenty examples of morphisms of sheaves:
d : E → E1, d : E1 → E2.
∂ : E → E1,0, ∂ : E0,1 → E1,1 = E2.
Dolbeault operator ∂ : E → E0,1, ∂ : E1,0 → E1,1.
∆ = 2i∂∂ : E → E2.
exp : O → O∗, exp : E → E∗, exp : C → C∗.
Inclusion morphisms: R → C, E → O...
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Remark 3.2. If f : F → G is a morphism of sheaves, then f defines fx : Fx → Gx, ∀x ∈
X.

Definition 3.5. We say that the sequence of morphisms F α−→ G β−→ H is exact if ∀x ∈ X,
Fx

αx−→ Gx
βx−→ Hx is an exact sequence.

The criteria for exactness is the following: ∀x ∈ X, ∀gx ∈ Gx, βxgx = 0 ⇐⇒ ∃fx ∈
Fx, gx = αxfx.

This is equivalent to: ∀x ∈ X, ∀U 3 x open set, ∀g ∈ G(U) and ∃x ∈ W ⊂ U ,
βW g|W = 0 iff ∃x ∈ V ⊂W open set, ∃f ∈ F(V ) s.t. αV (f) = g|V .

It is also equivalent to: ∀Ω ⊂ X an open set, ∀g ∈ G(Ω) with βΩg = 0, with the
covering Ω =

∪
i∈I

Ui, ∃fi ∈ F(Vi) s.t. for any i, αUifi = ρUi
Ω g.

Definition 3.6. We say that α : F → G is surjective if F → G → 0 is exact. β : G → H
is injective if 0 → G → H is exact.

Remark 3.3. β is injective ⇐⇒ ∀x ∈ X,βx is injective ⇐⇒ ∀U ⊂ X open set βU is
injective.

However, α is surjective cannot imply αU is surjective! Here is a counter-example

0 → C → E d−→ Z1 → 0

is exact due to Poincaré lemma but usually d(E) ⫋ Z1 (surjectivity of morphism between
sheaf is a local property).

Proposition 3.2.
0 → F α−→ G β−→ H

is exact,
a) ∀U ⊂ X open set, αU is injective (α identifies sections of F with sections in G).
b) ∀U ⊂ X open set, ∀g ∈ G(U), we have that βUg = 0 iff there exists f ∈ F(U) s.t.

αUf = gU . This comes from, the exactness of the G sequence combined with second axiom
of sheaves.

In particular, one can find an exact sequence

0 → F(X) → G(X) → H(X).

Consider now the short exact sequence

0 → F α−→ G β−→ H → 0.

In particular, you have the previous conditions and ∀U ⊂ X open set in X, ∀h ∈ H(U),
∀x ∈ U , there is x ∈ Vx ⊂ U an open set and ∃gx ∈ G(Vx) s.t. ρVx

U h = βVx(gx) (we can
find the pre-image in a smaller open set).
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Example 3.7 (Short exact sequences).

0 → C → E d−→ Z1 → 0.

0 → Z1 → E1 d−→ E2 → 0.

0 → O → E ∂−→ E0,1 → 0.

0 → Ω → E1,0 ∂−→ E1,1 → 0.

0 → C → O d=∂−−→ Ω → 0.

0 → Z → E exp(2πi·)−−−−−→ E∗ → 0.

0 → Z → O exp(2πi·)−−−−−→ O∗ → 0.

Obstructions to lift a global section in O∗ to O. For f = exp(2πig1) on U1 and
f = exp(2πig2) on U2, then we can show that g1 − g2 ∈ Z. The obstruction is the first
cohomology group of Z. We define cohomology H1(F) in order to solve a lifting problem
of local sections.

Proposition 3.3. Given a short exact sequence

0 → F → G → H → 0,

for any U ⊂ X open set we have exact sequence

0 → F(U) → G(U) → H(U),

but
0 → F(U) → G(U) → H(U) → 0,

is not exact.

Let us focus on the particular example

0 → C → E d−→ Z1 → 0.

Consider ω ∈ Z1(X), we want to understand the obstruction to find ϕ ∈ E(X) s.t. ω = dϕ

on X.
By Poincaré lemma, for any x ∈ X, there is Vx 3 x an open set in X such that there

is ϕx ∈ E(Vx) such that ω|Vx = dϕx. Thus, there is (Ui)i∈I an open cover of X s.t. there
is ϕi ∈ E(Ui) s.t. dϕi = ω|Ui . On Ui ∩ Uj , we have d(ϕj − ϕi) = 0, this implies that
there exists λij ∈ C(Ui ∩ Uj) s.t. ϕj − ϕi = λij . Let us find a necessary condition on
(λij) ∈ C(Ui ∩ Uj) which insures that ω admits a global primitive.

Assume there is ϕ ∈ E(X), ω = dϕ. Then on Ui, ω = d(ϕ|Ui) = dϕi implies that
ϕ|Ui − ϕi = λi ∈ C(Ui). Similarly we have ϕ|Uj − ϕj = λj ∈ C(Uj). Then on Ui ∩ Uj , we
have

λij = ϕj |Ui∩Uj − ϕi|Ui∩Uj = · · · = λi − λj .
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As we defined λij , they are not uniquely defined, but if ϕ′
i is another primitive on Ui and

ϕ′
j is another primitive on Uj , d(ϕi−ϕ′

i) = 0 suggests there is λ′i ∈ C(Ui) s.t. λ′i = ϕi−ϕ′
i

and there is λ′j ∈ C(Uj) s.t. λ′j = ϕj − ϕ′
j , and let λ′ij = ϕ′

i|Ui∩Uj − ϕ′
j |Ui∩Uj .

λ′ij = λij − (λ′i − λ′j) shows that (λij) and (λ′ij) will differ by λ′i − λ′j . By construction,
on Ui ∩ Uj ∩ Uk, λij + λjk + λki = 0, we define with respect to U =

∪
i∈I

Ui,

H1(U ,C) = {λij ∈ C(Ui ∩ Uj) : λij + λjk + λki = C}/{λi − λj : λi ∈ C(Ui), λj ∈ C(Uj)}.

We defined a map

H1
dR(X) = Z1(X)/dE(X) → H1(U ,C).

This map is injective: λij = λi − λj , then the local primitives ϕi + λi ∈ E(Ui) and
ϕj + λj ∈ E(Ui) agree on Ui ∩ Uj , hence they glue in a global smooth function ϕ s.t.
ω = ϕ, hence ω ≡ 0 in Z1(X)/dE(X) = H1

dR(X).
In order to prove the surjectivity: consider λij ∈ C(Ui ∩ Uj), and using a partition of

unity, construct functions fi ∈ E(Ui) and fj ∈ E(Uj) s.t. λij = fi|Ui∩Uj − fj |Ui∩Uj (We
used the fact that H1(U , E) = 0). Then the local functions fi and fj are s.t. dfi and dfj

agree on Ui ∩ Uj , meaning that dfi = ωi ∈ Z1(Ui) define a global section ω ∈ Z1(X) s.t.
ω|Ui = ωi and the cocycle associated to ω w.r.t. fi ∈ E(Ui) is λij .

Thus we’ve shown that the de Rham cohomology is topological invariant and H1(U , E)
does not depend on the choice of the open cover.

Exercise 3.1. H1(U , E) = 0.

Proof. Set U = {Ui}i∈I and for an 1-cocycle (λij) ∈ E(Ui ∩ Uj), we define λi =
∑
k∈I

ρkλik,

where ρk is the partition of unity subordinated to U . Note that ρkλik is a smooth function,
hence in E(Ui).

λi − λj =
∑
k∈I

ρk(λik − λjk) =
∑
k∈I

ρkλij = λij .

We can also prove that H1(X, E0,1) = 0 and H1(X, C) = 0.

Definition 3.7. Given a short exact sequence

0 → F α−→ G β−→ H → 0.

Which is the condition h ∈ H(X) to admit a pre-image, meaning ∃g ∈ G(X) s.t. βX(g) =

h?
This problem will be a gluing problem with sections in F and obstruction will be seen

as an element of a group H1(X,F). Consider X =
∪
i∈I

Ui an open cover such that ∀i,

∃gi ∈ G(Ui) s.t. βUi(gi) = ρUi
X h. On Ui ∩Uj, βUi∩Uj (gi|Ui∩Uj − gj |Ui∩Uj ) = 0, then there is

fij ∈ F(Ui ∩ Uj) s.t. αUi∩Ufij = gi|Ui∩Uj − gj |Ui∩Uj .
We associated to g an element fij ∈

∏
i,j F(Ui ∩ Uj) s.t. fij + fjk + fki ≡ 0 on

Ui ∩ Uj ∩ Uk, with fij = −fji, fii = 0 (they are called 1-cocycles). Cobords are those
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elements fij s.t. fij = fi|Ui∩Uj − fj |Ui∩Uj , where fi ∈ F(Ui) and fj ∈ F(Uj). Now we
define

H1(U ,F) = 1-cocycles/cobords.

We proved that there is an injective map from

H(X)/βX(G(X)) → H1(U ,F).

Moreover, one can get rid of U , by taking other cover V : we will say that V is “thiner”
than U if for any U ∈ U , there is V ∈ V s.t. V ⊂ U .

Then we define H1(X,F) = lim−→H1(U ,F) meaning that (fij)ij ∈ F(Ui ∩ Uj) will be
0 in H1(X,F) if there is U an open cover s.t. H1(U ,F) = 0. This will imply that
H1(V ,F) = 0 for any open cover V thiner than U .

Theorem 3.1. For any short exact sequence 0 → F → G → H → 0 of sheaves, there
exists a long exact sequence

0 → F(X) →G(X) → H(X)

→ H1(X,F) → H1(X,G) → H1(X,H),

where δ : H(X) → H1(X,F) was constructed previously (called cobord operator) and
H1(X,F) → H1(X,G) is fij ∈ F(Ui ∩ Uj) 7→ α(fij) ∈ G(Ui ∩ Uj), and the same for
H1(X,G) → H1(X,H).

Proposition 3.4 (Naturality). If there is a commutative diagram for short exact se-
quences:

0 F G H 0

0 F ′ G′ H′ 0

α

F

β

G H

α′ β′

,

then we get a commutative diagram

0 F(X) G(X) H(X) H1(X,F) H1(X,G) H1(X,H)

0 F ′(X) G′(X) H′(X) H1(X,F ′) H1(X,G′) H1(X,H′)

α(X)

F (X)

β(X)

G(X)

δ

H(X)

α

F∗

β

G∗ H∗

α′(X) β′(X) δ α β

.

Example 3.8.
0 → C → E d−→ Z1 → 0,

gives exact sequence

0 → C(X) ∼= C → E(X)
d−→ Z1(X)

δ−→ H1(X,C) → H1(X, E) = 0.

Then Z1(X)/dE(X) ∼= H1(X,C).

Corollary 3.1. π1(X) = 0 hence H1(X,C) = 0.
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Example 3.9.

0 Z E E∗ 0

0 Z C C∗ 0

∼=

exp(2πi·)

⊂ ⊂
exp(2πi·)

,

gives a long exact sequence

E(X) E∗(X) H1(X,Z) H1(X, E) = 0

C(X) C∗(X) H1(X,Z) H1(X, C) = 0

exp(2πi·)

⊂

δ

⊂ ∼=
exp(2πi·) δ

,

shows that

H1(X,Z) = C∗(X)/ exp(2πiC(X)) = E∗(X)/ exp(2πiE(X)).

Corollary 3.2. π1(X) = 0 hence H1(X,Z) = 0.

Example 3.10. Dolbeault isomorphism.

0 → O → E ∂−→ E0,1 → 0,

gives exact sequence

E(X)
∂−→ E0,1(X)

δ−→ H1(X,O) → H1(X, E) = 0.

Then we get the Dolbeault isomorphism E0,1(X)/∂E(X) ∼= H1(X,O).
H0(X,O) ∼= Ker ∂ : E → E0,1, H1(X,O) ∼= Coker ∂.

We will prove Riemann-Roch theorem which shows the difference of the dimensions of
H0(X,L) and H1(X,L) is a topological invariant (first result of index theory).

We will prove that dimH1(X,O) is finite and dimH1(X,O) = g is topological invariant
(while dimH1(X,C) = 2g).

Corollary 3.3. Any Riemann surface of genus g admits a nonconstant meromorphic
function with a unique pole of order at most g + 1.

Proof.
0 → O → M p−→ M/O → 0,

where p is a projection and M/O is the sheaf of “polar parts”. Sections of M/O are local
meromorphic functions and we decide f ∈ M(U) and g ∈ M(V ) define the same section
of (M/O)(U ∩ V ) if there is t ∈ O(U ∩ V ) s.t. (f − g)|U∩V = t.

(M/O)(X) are polar parts: such a global section it is a data given by P1, · · · , Pn ∈ X

and prescribed polar parts: in each Pi we consider in local coordinate zi s.t. zi(Pi) = 0,

ad

zdi
+
ad−1

zd−1
i

+ · · ·+ a1
z1i
,
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it is a polynomial of degree d in 1
zi

with no constant term. Note that dim(M/O)(X) = ∞.
The short exact sequence gives

M(X)
pX−−→ (M/O)(X)

δX−−→ H1(X,O).

Since dimH1(X,O) is finite, then dimKer δ is infinite hence dim Im pX is infinite.
Let us consider a given point P ∈ X and the vector space in (M/O)(X) generated by

{ 1
zg+1 , · · · 1z}, where z is a local coordinate at P ∈ X s.t. z(P ) = 0. This implies there are

λg+1, · · · , λ1 ∈ C s.t.
g+1∑
i=1

λi

zi
∈ Ker δ = Im pX . Thus there is f ∈ M(X), with a unique

pole at P and polar parts at P being
g+1∑
i=1

λi

zi
.

Corollary 3.4. If X is a compact Riemann surface of genus g = 0, then X is biholomor-
phic to P1.

Proof. f ∈ M(X) non constant and have a unique pole P ∈ X of order 1 (at most 1 and
non constant). Such a map is a holomorphic map f : X → P1 of degree 1 (since ∞ has a
unique pre-image), hence f is an isomorphism (f ′ does not vanish).

Corollary 3.5. If g = 1, there exists a meromorphic f ∈ M(X) with a unique pole 2 (in
fact ≤ 2 but the order being 1 is the last case).

Weierstrass ℘-function (exercise).

Remark 3.4. If we have a non-constant holomorphic map f : X → P1, it is surjective
due to closeness and openness of f .

If we admit dimH1(X,L) is finite then we have the following general theorem.

Theorem 3.2. Any holomorphic line bundle L over a Riemann surface admits infinitely
many meromorphic sections. More precisely, for any P ∈ X, there exists a meromorphic
section s of L such that s admits a unique pole at P ∈ X with order at least 1 and at most
dimH1(X,L) + 1.

Proof.
0 → OL → ML

p−→ ML/OL → 0,

where OL is the sheaf of local holomorphic sections of L and ML is the sheaf of local
meromorphic sections of L. The fibers at x ∈ X of ML/OL is the quotient of

{(U, s) : U open neighborhood of x in X, s ∈ ML(U)}/ ∼,

where (U, s) ∼ (V, t) when t− s is a holomorphic section on W ⊂ U ∩ V .
(ML/OL)(X) is the space of polar parts of sections of L. Such a polar part at P ∈ X

is given in a local coordinate z such that z(P ) = 0 and with respect to a local holomorphic
section t of L by the following data

(
d∑

i=1

ai
zi
)t, ai ∈ C.
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We choose d = dimH1(X,L) + 1, then the exact sequence

ML(X)
pX−−→ (ML/OL)(X)

δX−−→ H1(X,OL),

shows that there exists ai ∈ C such that the corresponding polar part is in Ker δX =

Im pX .

An alternative proof using the Dolbeault operator. Recall ∂L : C∞(U,L) → C∞(U,L ⊗
E0,1). For any U ⊂ X, locally we can define ∂L(ft) as being ∂(f)t, where f is a lo-
cal smooth section and t a holomorphic trivial of L. If s is another holomorphic trivial
and s = ht where h is a holomorphic function, then ∂L(fs) = ∂L(fht) = ht∂(f) = ∂(f)s.
Thus ∂L is well-defined.

0 → OL → EL
∂L−−→ L⊗ E0,1 → 0

gives a long exact sequence

EL(X)
∂L−−→ (E0,1 ⊗ L)(X)

δ−→ H1(X,OL)(∼= H1(X,L)).

Then we have the Dolbeault isomorphism

(E0,1 ⊗ L)(X)/∂LEL(X) ∼= H1(X,L).

Denote by d = dimH1(X,OL) + 1 and choose a point P ∈ X with a local coordinate
z such that z(P ) = 0, and t a local holomorphic trivialization of L at P .

Consider for any i ∈ {1, · · · , d}, the local section ρ t
zi

with ρ a bump function. Then
ρ t
zi

∈ EL(X \ {P}) and ∂L(ρ
t
zi
t) = ∂(ρ) t

zi
t on X \ {P} but ∂(ρ) = 0 in the neighborhood

of P , hence ∂(ρ t
zi
t) ∈ (L ⊗ E0,1)(X).

Thus there are λ1, · · · , λd ∈ C such that
d∑

i=1
λi(∂ρ)

t
zi

≡ 0 in (E0,1 ⊗ L)(X)/∂LEL(X).

Thus there is β ∈ EL(X) s.t. ∂Lβ =
d∑

i=1
λi(∂ρ)

t
zi

, hence denote s =
d∑

i=1
λiρ

t
zi

we have s−β

is holomorphic. Thus s is meromorphic section of L with prescribed polar part.

3.3 Line bundles and divisors

X a compact Riemann surface.

Definition 3.8. A divisor on X is an element of the free abelian group Div(X) generated
by points in X. Such an element is given by

D =

k∑
i=1

ni · Pi, Pi ∈ X,ni ∈ Z.

We define degD =
k∑

i=1
ni. If for any 1 ≤ i ≤ k, we have ni ∈ N∗, we say D is an effective

divisor. mPi(D) = ni ∈ Z and mQ(D) = 0 if Q /∈ {P1, · · · , Pk}.
We say D1 ≥ D2 iff D1 −D2 ≥ 0, that is mP (D1 −D2) ≥ 0 for any P ∈ X (D1 −D2

is an effective divisor).
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For any f ∈ M(X), we associated the divisor

div(f) =
∑
P∈X

vP (f) · P, vP (f) =


= 0, P is not a zero or a pole;

= mi ∈ N∗, P is a zero of order mi;

= −ni ∈ Z \ N, P is a pole of order ni.

For f, g ∈ M(X), we have

vP (fg) = vP (f) + vP (g) ⇒ div(fg) = div(f) + div(g).

vP (f
−1) = −vP (f) ⇒ div(f−1) = −div(f).

div(f) is effective iff f is holomorphic.

Definition 3.9. We do the same with (L, f), where L is a holomorphic line bundle over
X and f ∈ ML(X), div(f) =

∑
P∈X

vP (f) is well-defined divisor (this does not depend upon

the local trivialization).
We have f−1 ∈ ML∗(X) and f ∈ ML1(X) and g ∈ ML2(X) give that f · g ∈

ML1⊗L2(X).
We will say that (L1, s) and (L2, t) are equivalent w.r.t. L1,L2 holomorphic line bun-

dles, s ∈ ML1(X) and t ∈ ML2(X), if there exists an isomorphism

ϕ : L1 → L2, such that ϕ(s) = t.

Proposition 3.5. Two pairs (L1, s) and (L2, t) which are equivalent, define the same
divisor div(s) = div(t) and the map

(L1, s)/ ∼→ Div(X),

is a bijection which is a group homomorphism.

Proof. (L1, s) ∼ (L2, t) iff t ·s−1 is a holomorphic section of L∗
1⊗L2 which does not vanish.

Then div(t · s−1) = 0 hence div(t) = div(s).
The above shows that the map is injective. Let us prove now the surjectivity. Take

D =
k∑

i=1
ni · Pi, consider U = (U0, · · · , Uk) such that Ui and Uj are disjoint for i, j > 0,

and U0 = X \ {P1, · · · , Pk}. Ui = Di is a small disk centered at Pi with local coordinate
zi with zi(P ) = 0.

Consider the transition functions ϕi = ϕUiU0 = zni
i holomorphic on zi 6= 0. There is no

cocycle condition since Ui ∩ Uj ∩ Ul = ∅. The cocycle defines a holomorphic line bundle
and by construction the section ≡ 1 on U0, is meromorphic section of the line bundle with

zeros and poles at Pi s.t. the associated divisor is D =
k∑

i=1
ni · Pi.

Definition 3.10. The pre-image of the divisor D ∈ Div(X) is a given holomorphic line
bundle called OD which comes with a meromorphic section 1D such that div(1D) = D.

For example O is associated to D = 0.
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Moreover if two divisor D and D′ define the same holomorphic line bundle OD this
implies that there are two meromorphic sections s1 and s2 of OD such that div(s1) = D

and div(s2) = D′. But there is f ∈ M(X) s.t. fs1 = s2 and div(fs1) = div(f) + div(s1)

hence D′ = div(f) +D. Thus, there is a bijection map

Holomorphic line bundles → Divisors/ ∼ .

∼ is called linear equivalent, D ≡ D′ iff there is f ∈ M(X) s.t. D = D′+div(f) = D′+(f).

Denote by deg(D) =
k∑

i=1
ni, then D = D′ + (f) gives that deg(D) = deg(D′) because

deg(f) = 0.

Exercise 3.2. A meromorphic function on a compact Riemann surface admits as many
zeros as poles.

Proof. A non-constant meromorphic function f can be seen as f : X → P1 and it is
surjective. We want to show the number of f−1(0) equals the number of f−1(∞) (WAIT).

Another proof is given by considering f ′

f , please check Proposition 3.8.
A more general result is Corollary 3.7.

Mittag-Leffler Problem

H0(X,OD) = {f ∈ M(X) : f · zni
i is holomorphic}.

Then vPi(f) ≥ −ni, i.e. vPi(f) + ni ≥ 0,

H0(X,OD) = {f ∈ M(X) : div(f) ≥ −D}.

OD is trivial iff there is s ∈ H0(X,OD) non-vanishing, that is s ∈ M(X) with div(s) =

−D, i.e. div(s−1) = D.

Theorem 3.3 (Mittag-Leffler Problem). Let us consider P1, · · · , Pk, Q1, · · · , Ql ∈ X and
mi ∈ N, nj ∈ N, we are trying to find f ∈ M(X) such that f admits poles at Pi of order
at most mi and zeros at Qj of order at least nj.

That is vPi(f) ≥ −mi and vQj (f) ≥ nj, that is div(f) ≥ −D, where D =
∑
i,j
miPi −

njQj. That is f ∈ H0(X,OD).

We have seen in Theorem 3.2 that for g = 0, there is s ∈ H0(X,OP ) \H0(X,O) for
any P ∈ X and D = −P .

Notice that the divisor associated to a holomorphic section is effective.

Proposition 3.6. The degree of a line bundle is a topological invariant.

We have defined deg(D) =
∑
ni, where D =

∑
niPi and we define deg(OD) = deg(D)

(this does not depend on the section because if L = OD and L = OD′ we have seen that
there is f ∈ M(X) s.t. D = D′ + (f), hence deg(D) = deg(D′) since deg(f) = 0).
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Topological definition of degree of complex line bundle

The degree can be defined for any topological complex line bundle over a Riemann surface.
Take L a complex line bundle and consider a continuous section s with a finite number of
isolated zeros P1, · · · , Pk ∈ X (s will trivialize the complex bundle on X \ {P1, · · · , Pk}).

In the neighborhood of each Pi ∈ X, consider the local coordinate zi s.t. zi(Pi) = 0

and the bundle is trivialized over {|zi| < 1}. For ε > 0 small enough, s does not vanish
on |zi| = ε and we consider the map

s||zi|=ε : |zi| = ε ∼= S1
s̃Pi−−→ C∗ ∼= S1

and define indPi(s) = deg(s̃Pi). We define

deg(L) = deg(s) =

k∑
i=1

indPi(s),

it is a topological invariant.

Exercise 3.3. deg(L) does not depend on the section s.

Proof. If s0 and s1 are two sections of L, consider st = (1 − t)s0 + ts1, t ∈ [0, 1]. If we
can show that deg(st) is continuous on t, then since it’s in a discrete group Z, we have
deg(s0) = deg(s1).

Exercise 3.4. deg(OD) = deg(D). Indication: consider the meromorphic section 1D and
associate the coordinates section s = 1D

1+∥1D∥2 , deg(s) = D.

Exercise 3.5. deg(L) = 0 iff L is topologicall trivial.

Proposition 3.7. Let L be a holomorphic line bundle with deg(L) < 0, then L does not
admit non trivial holomorphic sections.

Proof. If s ∈ H0(X,L) is a holomorphic section, deg(L) = deg(s) ≥ 0.

Proposition 3.8. Let X be a compact Riemann surface and ω ∈ Ω1
mer(X) a meromorphic

1-form on X (ω is a meromorphic section of T ∗X). Then
∑

P∈X
ResP ω = 0.

Definition 3.11. T ∗X = KX is called the canonical bundle and div(ω) is usually
called a canonical divisor: its class is denoted by K, meaning T ∗X = OK .

Corollary 3.6. For any f ∈ M(X), df
f ∈ Ω1

mer(X) and

ResP (
df

f
) =


0, P is not a zero nor a pole;

n ∈ N∗, P is a zero of order n;

−m ∈ Z \ N, P is a pole of order m.

.

Then div(f) is of degree zero.
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Proof of the proposition. ResP (ω) is well-defined since if P is a pole of ω, consider z a
local coordinate at P s.t. z(P ) = 0 and consider

ω = [
ad
zd

+
ad−1

zd−1
+ · · ·+ a1

z
+ f(z)]dz,

with ai ∈ C and f ∈ O(U). The point is that a1 does not depend on the local coordinate
z and is 1

2πi

∫
|zi|=ε ω, for ε small enough, and by definition a1 = ResP ω.

∑
P∈X

ResP ω =
k∑

i=1

∫
|zi|=ε

ω =Stokes

∫
X\

k∪
i=1

{|zi|≤ε}
dω = 0.

Corollary 3.7. For f ∈ M(X), ω = df
f−a gives the number of poles is the number of

f−1({a}), for any a ∈ C.
Hence for any a ∈ C, #f−1({a}) is the same, now we define it as deg(f).

3.4 Riemann-Roch theorem

Reminder: all holomorphic line bundles over a Riemann surface X admit meromorphic
sections. If L is a holomorphic line bundle and s is a meromorphic sections, we call
D = div(s) and L ∼= OD. If s′ = fs is another meromorphic section of L with f ∈ M(X)

(because s′ · s−1 is a section of L ⊗ L∗ = X × C trivial). div(s′) = div(f) + div(s), hence
D′ := div(s′) = div(s) + (f) = D + (f), which we say D′ ∼ D are linear equivalent and
(f) is a principal divisor.

OD1 ⊗ OD2 = OD1+D2 because if 1D1 is a meromorphic section of OD1 such that
div(1D1) = D1 and 1D2 is a meromorphic section of OD2 such that div(1D2) = D2, then
1D1 ·1D2 is a meromorphic section of OD1⊗OD2 and div(1D1 ·1D2) = div(1D1)+div(1D2) =

D1 +D2.
One classical notation: OK ⊗OD = ΩD.

ΩD(U) = {ω meromorphic sections of Ω(U) such that div(ω) ≥ −D}.

(OK ⊗OD)(U) = OK(U)⊗OD(U) = Ω(U)⊗O(U).

Theorem 3.4 (Riemann-Roch theorem). Let D be any divisor on a compact Riemann
surface of genus g, then

dimH0(X,OD)− dimH1(X,OD) = 1− g + deg(D).

It is equivalent to say that for any holomorphic line bundle L,

dimH0(X,OL)− dimH1(X,OL) = 1− g + deg(L).

Corollary 3.8 (Riemann). dimCH
0(X,OD) ≥ 1− g + deg(D).

We shall admit the following theorem in advance.

Theorem 3.5 (Serre duality). H1(X,OD)
∗ ∼= H0(X,OK−D) = H0(X,Ω−D).

Then dimCH
1(X,OD) = dimCH

0(X,Ω−D).
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Some interpretation of Riemann-Roch theorem

For D = n1P1 + · · ·+ nkPk an effective divisor, ni ∈ N∗,

Ω−D = {s ∈ H0(X,Ω) : s vanishes at each Pi of order ≥ ni}.

Riemann-Roch will state:

dimH0(X,OD)− dimH0(X,Ω−D) = 1− g + deg(D).

This implies
dimH0(X,OD) = 1− (g − dimH0(X,Ω−D)) + deg(D).

While
H0(X,OD) = {f ∈ M(X) : div(f) ≥ −D},

that is, f admits poles at Pi of order at most ni.
There is a natural map the polar part map

M(X) ⊃ H0(X,OD) → Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnk = Cdeg(D).

The map at Pi is given by the polar part

f 7→ ai,ni

zni
i

+ · · ·+ ai,1
zi
,

where zi is a local coordinate at Pi with zi(Pi) = 0 and ai,l ∈ C.
We want to understand the image of this map. Also notice that the polar part map is

well-defined and injective on H0(X,OD)/O(X), meaning that two meromorphic functions
which have the same polar part differ by a holomorphic function on X, hence by a constant.

Recall that the residue theorem, for any f ∈ M(X), any ω ∈ Ω(X) (holomorphic
1-form), we have

∑
x∈X

Resx(fω) = 0. For a polar part there is an obstruction to be lifted

to a global defined f ∈ M(X) which is, ∀ω ∈ Ω(X) denoted by ω(zi) =
∞∑
j=0

bijz
j
i dzi the

local expansion in power series at each Pi. Since
∑
x∈X

Resx(fω) = 0, we have

k∑
i=1

ni∑
j=1

ai,j · bi,−1−j = 0.

Example 3.11. D = P (hence k = 1 and n1 = 1), then the condition on the polar part
at P : λ

z is Res
(
λ
zω
)
= 0, i.e. λ · b0 = 0, where b0 is such that ω(z) = (b0 + b1z + · · · )dz.

Moreover this implies that all forms ω ∈ Ω−D(X) give trivial condition because they
vanish at order ni at each Pi, i.e. bi,j = 0,∀j ≤ ni − 1.

The image of polar part map is the space realizing the non trivial conditions. Therefore,
the image of the polar part map is of dimension

deg(D)− [dimCH
0(X,Ω)− dimH0(X,Ω−D)] = deg(D)− g + dimH1(X,OD).
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Here

dimH0(X,Ω) = dimH0(X,OK) = dimH1(X,OK−K) = dimH1(X,O) = 0.

Since the polar part map is injective on H0(X,OD)/C, hence the image is of dimension
dimCH

0(X,OD)− 1. Thus

dimCH
0(X,OD)− dimCH

1(X,OD) = 1− g + deg(D).

Proof of Riemann-Roch theorem

Proof of Riemann-Roch theorem. Notice that for D = 0, we have

dimH0(X,O)− dimH1(X,O) = 1− g + 0.

We will prove now that Riemann-Roch is true for D if and only if Riemann-Roch is
true for D + P for any P ∈ X.

We need to prove that

dimH0(X,OD)− dimH1(X,OD) = dimH0(X,OD+P )− dimH1(X,OD+P )− 1.

There is a short exact sequence

0 → OD → OD+P → SP → 0,

where SP is the sky scraper sheaf defined in Example 3.4.
First case, d ∈ N∗ is the coefficient of P in D + P and then the coefficient of P in D

is d− 1 ∈ N
f ∈ OD+P (U) with P ∈ U and consider at a local coordinate z at P the polar part of f

as being a1
z + · · ·+ ad

zd
. Then f ∈ OD(U) if and only if ad = 0. Define OD+P (U) → SP (U),

f 7→ ad.
By construction we have a short exact sequence. This gives a long exact sequence:

0 → H0(X,OD) → H0(X,OD+P ) → H0(X,SP ) → H1(X,OD) → H1(X,OD+P ) → H1(X,SP ) → 0.

This gives the alternate sum of dimensions

0 = dimH0(X,OD)− dimH0(X,OD+P ) + dimH0(X,SP )

−dimH1(X,OD) + dimH1(X,OD+P )− dimH1(X,SP ).

Since dimH0(X,SP ) = 1 and dimH1(X,SP ) = 0, we have

0 = dimH0(X,OD)− dimH0(X,OD+P ) + 1− dimH1(X,OD) + dimH1(X,OD+P ).

Similar proof works for negative coefficient case of D, and works for D − P .

Corollary 3.9. deg(K) = 2g − 2.
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Proof. Consider D = K, H0(X,OD) = H0(X,OK) = Ω(X).

dimΩ(X) = dimH0(X,Ω) = dimH1(X,O) = g.

dimH1(X,OK) = dimH0(X,OK−K) = dimH0(X,O) = 1.

Then
g − 1 = 1− g + deg(K).

Then degK = 2g − 2.

Corollary 3.10. If deg(D) > 2g − 2, then

dimH0(X,O) = 1− g + deg(D), and dimH1(X,OD) = 0.

Proof. (H1(X,OD))
∗ ∼= H0(X,OK−D) and deg(K − D) = 2g − 2 − deg(D) < 0 hence

H0(X,OK−D) = 0.

Example 3.12. Another particular case deg(D) = 0.
Then H0(X,OD) either admits no nontrivial section or if there is, this section does

not vanish. Then we have two casesdimH0(X,OD) = 0

dimH1(X,OD) = g − 1
or

dimH0(X,OD) = 1

dimH1(X,OD) = g
.

Theorem 3.6 (Riemann-Hurwitz theorem). X and Y are Riemann surfaces of genus
g(X) and g(Y ) respectively. Let f : X → Y be a holomorphic non-constant map, f is an
open map and since X is compact f will be surjective, with finite fiber and f is a ramified
cover.

For any x ∈ X, there is holomorphic chart coordinate in x and a holomorphic chart
centered at f(x) such that f reads: z → zd, d ≥ 1. d ∈ N does not depend on local
coordinates and it is called the ramification degree at x and denoted by l(x).

The set R = {x ∈ X : l(x) > 1} is called the ramification set and R is a finite set.
Moreover X \ f−1(f(R)) → Y \ f(R) is a cover. The degree of the cover is called deg(f)

(the number of sheets), deg(f) =
∑

x∈f−1(y)

l(x) for any y ∈ Y \ f(R).

(i) χ(X) = 2− 2g(X) = deg(f)(χ(Y ))−
∑
i∈X

(l(x)− 1).

(ii) 2g(X)− 2 = deg(f)(2g(Y )− 2) +
∑
x∈X

(l(x)− 1).

Example 3.13. ℘ : C/Λ → P1, 0 = 2 · (0− 2) + 4 · 1.

Corollary 3.11. If g(Y ) > g(X), then there is no non-constant holomorphic map f :

X → Y .

Corollary 3.12.
∑
x∈X

(l(x)− 1) ∈ 2Z.
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Proof of Riemann-Hurwitz theorem. Let us take ω a meromorphic 1-form on Y . Then
div(ω) =

∑
P∈Y

ordP (ω) · P is the canonical divisor of degree 2g(Y )− 2.

Now consider f∗ω as a meromorphic section of KX ,

ordx(f
∗ω) = l(x) ordf(x) ω + (l(x)− 1).

In order to prove this formula one look in local coordinates z f−→ zd to the form ω = wndw,

fω = (zd)nd(zd) = dzdn+d−1dz,

hence ordx(f
∗ω) = dn+ d− 1 = l(x) ordf(x) ω + (l(x)− 1).

2g(X)− 2 = deg(KX)

= deg(div(f∗ω))

=
∑
x∈X

ordx(f
∗ω)

=
∑
x∈X

l(x) · ordf(x) ω +
∑
x∈X

(l(x)− 1)

=
∑
y∈Y

(
∑

x∈f−1(y)

l(x)) ordy ω +
∑
x∈X

(l(x)− 1)

= deg(f)
∑
y∈Y

ordy ω +
∑
x∈X

(l(x)− 1)

= deg(f)(2g(Y )− 2) +
∑
x∈X

(l(x)− 1).

Remark 3.5. How to find a triangulation of a compact Riemann surface Y ?
One can get a triangulation of Y by using f : Y : P1(C) a holomorphic map (f ∈

M(Y ) \ O(Y ) do exist) and then pull-back a triangulation of S2 with vertices at f(R)

where R is the ramification points.

Topological proof of Riemann-Hurwitz theorem. Now take a triangulation of Y and add
vertices at points in f(R), then pull back through f this triangulation on a triangulation
on X, then

2− 2g(X) = # vertices in X −# edges in X +# faces in X

=
(
deg(f) · (# vertices in Y )−

∑
x∈X

(l(x)− 1)
)

− (deg(f))(# edges in X) + (deg(f))(# faces in X)

= deg(f)(2− 2g(Y ))−
∑
x∈X

(l(x)− 1).

Theorem 3.7 (Topological invariance of “g”). Let X be a compact Riemann surface
such that dimH1(X,O) = dimH0(X,Ω) = g, Then dimH1(X,C) = 2g.
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Proof. We will construct a short exact sequence:

0 → Ω(X)
α−→ Z1(X)/dE(X) = H1(X,C) β̃−→ E0,1(X)/∂E(X) = H1(X,O) → 0.

Then from dimΩ(X) = dimH1(X,O) = g, we have dimH1(X,C) = 2g.

Ω(X) ↪→ Z1(X) → Z1(X)/dE(X),

then α is the composition of the inclusion with the quotient map.

β : Z1(X) → E0,1(X), η 7→ η(0,1).

β descends on β̃ : Z1(X)/dE(X) → E0,1(X)/∂E(X), because β ◦ d = ∂.
Let us prove that this gives an exact sequence.
α injective: let ω ∈ Ω(X), α(ω) = 0. Then there exists f ∈ E(X) s.t. ω = df . But ω

is of type (1, 0), i.e. ∂f = 0 hence f ∈ O(X) hence constant, then ω = df = 0.
Imα ⊂ Ker β̃: For any ω ∈ Ω(X), α(ω) is a holomorphic 1 form, hence its (0, 1) part

is 0, which implies α(ω) ∈ Ker β̃.
Ker β̃ ⊂ Imα: Take u ∈ Z1(X) such that u + dE(X) is in the kernel of β̃, i.e. β̃(u +

dE(X)) = 0, i.e. βu = ∂v for some v ∈ E(X). Then u − dv is holomorphic because it is
closed and of type (1, 0), hence u+ d(E(X)) ∈ α(Ω).

For β̃ is surjective we need

Lemma 3.1 (Weyl lemma). For any u ∈ E0,1(X), there exits v ∈ E(X) such that u−∂v
is closed.

Proof of the lemma. Use the fact that ∂∂ : E(X) → E2(X) has an image which is given
by σ ∈ E2(X) such that

∫
X σ = 0.

With this we have that du = ∂∂v, v ∈ E(X) (since
∫
X du = 0 by stokes). This implies

d(u− ∂v) = du− ∂∂v = 0.

This proves the surjectivity of β̃. For any u ∈ E0,1(X) we need to show that there
exists u ∈ Z1(X) and a function v ∈ E(X) such that u = β(u) + ∂v.

Weyl lemma insures that u can be chosen of type (0, 1), closed and anti-holomorphic.
Therefor β̃|Ω(X) is surjective.

Proposition 3.9. Let X be a compact Riemann surface and the maps defined as

Ω(X) H1(X,C)

Z1(X) Z1(X)/dE(X).

α

∼=

Ω(X) H1(X,C)

Z1(X) Z1(X)/dE(X).

α

∼=

We have that α and α̃ are injective and

H1(X,C) = α(Ω(X))⊕ α(Ω(X)).
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Proof. We already proved that α is injective (same proof implies α is injective). dimα(Ω(X)) =

dimα(Ω(X)) = gand we proved that dimH1(X,C) = 2g.
We need to prove that α(Ω(X)) ∩ α(Ω(X)) = {0}. If ω ∈ Ω(X) and ω′ ∈ Ω(X) such

that α(ω) = α(ω′) then there is f ∈ E(X) s.t. ω − ω′ = df . Then ω = ∂f and ω′ = −∂f .
f is harmonic since ∂∂f = ∂ω = 0 since ω is holomorphic. Then f constant and ω = ω′

hence = 0.

Remark 3.6. Cohomology type.

3.5 Abel theorem

Theorem 3.8. For any compact Riemann surface of genus g ≥ 1 and for any P ∈ X,
there is ω ∈ H0(X,Ω) such that ω(P ) 6= 0.

Proof. Assume that all ω ∈ Ω(X) such that ω(P ) = 0 for some P ∈ X. ThenH0(X,Ω−P ) =

H0(X,OK ⊗O(−P )) ↪→ H0(X,Ω) is a group isomorphism.
Applying Riemann-Roch theorem for both OK and OK ⊗O−P implies that

dimH1(X,OK ⊗O−P ) = dimH1(X,OK) + 1.

By Serre duality
dimH1(X,OK) = dimH0(X,O) = 1.

Then dimH1(X,OK ⊗O−P ) = 2, hence again by Serre duality,

dimH0(X,OP ) = 2.

Thus there is a meromorphic function f ∈ M(X) having a pole of order at most 1 at point
P .

This implies there is a well-defined map X → P1, a contradiction to g = 1.

Remark 3.7. This implies there is a well-defined map

X → Pg−1, x 7→ [ω1(x) : · · · : ωg(x)],

where (ω1, · · · , ωg) is a basis of Ω(X).
You can associate to any x ∈ X the hyperplane in Ω(X) of those ω ∈ Ω(X) such that

ω(x) = 0.

For X compact Riemann surface and a divisor
k∑

i=1
ni · Pi, for ni ∈ Z and Pi ∈ X,

which is now called 0-chains. Then we introduce the 1-chains c =
k∑

i=1
nici with ni ∈ Z and

ci : [0, 1] → X. One can define for any ω ∈ E1(X),∫
c
ω =

k∑
i=1

ni ·
∫
ci

ω.
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The set of 1-chains C1(X) is an abelian group. There is a border map:

∂ : C1(X) → C0(X) = Div(X), c =

k∑
i=1

nici 7→ c =

k∑
i=1

ni(ci(1)− ci(0)).

If c is a closed curve, then ∂c = 0.
If c ∈ C1(X), then deg(∂c) = 0. Then the image of C1(X) is in Div0(X), the group of

divisors of degree 0 on X. Moreover, ∂(C1(X)) = Div0(X), since for any D ∈ Div0(X),
one can consider pairs of points (Pi, Qi) such that D =

∑
Pi−

∑
Qi, then let ci be a curve

with ci(1) = Pi and ci(0) = Qi.
We define 1-cycles

Z1(X) = Ker(C1(X)
∂−→ Div0(X)).

We say c, c′ ∈ Z1(X) are homologous if ∀ω ∈ Z1(X) a closed smooth 1-form,
∫
c ω =

∫
c′ ω.

Now we define
H1(X,Z) = Z1(X)/ ∼ .

Remark 3.8. For any γ ∈ H1(X,Z) and any ω ∈ Z1(X),
∫
γ ω is well-defined.

Remark 3.9. For any closed homotopic curves c1 and c2,
∫
c1
ω1 =

∫
c2
ω, ∀ω ∈ Z1(X).

Since we have
0 =

∫
c×[0,1]

dω =

∫
c1

ω −
∫
c2

ω.

Thus i is well-defined in the following diagram and i is always surjective,

π1(X) H1(X,Z)

π1(X)/[π1(X), π1(X)]

i

.

Usually i is not injective since π1(X) is not abelian in general. Moreover, in this case, we
have π1(X)/[π1(X), π1(X)] ∼= H1(X,Z) (but we will not prove it).

Theorem 3.9 (Jacobian of a Riemann surface). Integration over 1-cycles determinus∫
: H1(X,Z) → (Ω(X))∗,

such that the image is a lattice called the period lattice.

(Ω(X))∗/H1(X,Z) = (H0(X,Ω))∗/H1(X,Z) ∼= Cg/Λ =: Jac(X),

is called the jacobian of X (topologically Jac(X) ∼= (S1)2g).

Example 3.14. X = C/Z ⊕ τZ an elliptic curve. Ω(X) = Cdz, the period lattice is
Z⊕ τZ, and Jac(X) = X.

Remark 3.10. Integration map associated to any [γ] ∈ H1(X,Z) the 1-form on Ω(X) is
the integration over γ,

∫
γ ∈ (Ω(X))∗ such that ω 7→

∫
γ ω for any ω ∈ Ω(X).
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Remark 3.11. Assume
∫
γ ω = 0 for any γ ∈ H1(X,Z), this implies that ω admits a

primitive which is a holomorphic function, hence constant hence ω = 0.

Remark 3.12. H1(X,Z) ↪→ H1(X,C) (is not injective in general). H1
DR(X,C) = Ω(X)⊕

Ω(X).
The image of H1(X,Z) in H1(X,C) is discrete hence it’s discrete in (Ω(X))∗.
Assume that

∫
sends H1(X,Z) in a real hyperplane in (Ω(X))∗. This implies there is

ω ∈ Ω(X), such that Re(
∫
γ ω) = 0 for any γ ∈ H1(X,Z). Then Re(

∫
γ ω) is a well defined

function on X, then
∫
γ Reω is a well defined function on X.

Consider the universal cover of X and since
∫
γ Reω = 0, there is a real harmonic

primitive f on X̃ of Reω such that
∫
γ Reω = f . Moreover, f is well-defined on X, hence

by maximal principle, f is constant, hence Reω = 0.
Imω = J Reω hence ω = 0.

Another interpretation is take (ω1, · · · , ωg) a torus of Ω(X), then

H1(X,Z) → Cg, γ 7→ (

∫
γ
ω1, · · · ,

∫
γ
ωg).

The image of this map is the period lattice Jac(X) = Cg/Period Lattice.
There is a canonical embedding X → Jac(X). Fix a basis point O ∈ X, consider the

map
P ∈ X → (ω →

∫
γOP

ω) ∈ (Ω(X))∗.

This is not well-defined, since if we choose two curves connecting O and P , we have∫
γ
ω −

∫
γ′
ω =

∫
γ∪(−γ′)

ω ∈ H1(X,Z),

hence
∫
γOP

∈ (Ω(X))∗/Period Lattice = Jac(X).

Theorem 3.10 (Abel-Jacobi theorem). The space of holomorphic line bundles of de-
gree 0 over X is canonically isomorphic to Jac(X) through the map

Pic0(X) := Div0(X)/ ∼→ Jac(X), D =
k∑

i=1

(Pi −Qi) 7→ (ω →
∫
c
ω) ∈ (Ω(X))∗,

where c is a 1-chain such that ∂c = D.

Remark 3.13. The map is well-defined because if∫
c1

ω −
∫
c2

ω =

∫
c1∪(−c2)

ω ∈ Periods.

If D = D′+(f), the map is well defined because we will see that Abel-Jacobi map send
(f) to 0.
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Proof of Abel-Jacobi theorem.
Step 1. For f ∈ M(X), f : X → P1, we will prove Φ(div(f)) = 0. Set R ⊂ X

the ramified set of f : R = {x ∈ X : f ′(x) = 0}, i.e. l(x) > 0. f defines a cover
from X \ f−1(f(R)) → P1 \ f(R). For any y ∈ Y = P1 \ R, there are open sets V 3 y

and Ui ⊂ X \ f−1(f(R)), such that f−1(V ) =
n∪

i=1
Ui and foralli, f |Ui : Ui → V is a

biholomorphism. Let us denote by ϕi = (f |Ui)
−1 and ∀ω ∈ Ω(X) define ωi = ϕ∗

iω|Ui ∈

Ω(V ), define tr(ω) =
n∑

i=1
ωi ∈ Ω(V ).

We define tr(ω) ∈ Ω(P1 \f(R)). Since ω ∈ Ω(X), ω is bounded in the neighborhood of
points in f−1(f(R)), ω = h(z)dz with h bounded. This implies that in the neighborhood
of points P ∈ f(R), tr(ω) is bounded: l(z)dz, l bounded in the neighborhood of P in
P1 \ f(R). By Riemann removing singularity theorem, tr(ω) extends holomorphically to
a section of Ω(P1) = {0} hence tr(ω) = 0.

Let γ be a curve in P1 such that γ(0) = 0 and γ(1) = ∞. Denote f−1(γ) = c1 + · · ·+
cn =: c such that ∂(c) = (f). Then∫

c
ω =

∫
γ
tr(ω) = 0,

hence Φ(div(f)) = 0.
Step 2, Abel theorem. Φ(0) = 0 implies D = div(f), for some f ∈ M(X).
Step 3, Jacobi inversion theorem. Φ is surjective.
Idea of the proof. Fix (Q1, · · · , Qg) ∈ X × · · · ×X g-fold. Define a map

F : X × · · · ×X → Jac(X), (P1, · · · , Pg) 7→ (ω →
∫
c
ω),

where c is a 1-chain in X such that ∂c = P1 + · · · + Pg − (Q1 + · · · + Qg). By the same
reason, it does not depend on the choice of c.

dF : TX × · · · × TX → (Ω(X))∗ ⇒ (dF )∗ : Ω(X) → T ∗X × · · · × T ∗X,

and (dF )∗(ω) = (ω(P1), · · · , ω(Pg)).

Exercise 3.6. Fix points P1, · · · , Pg, ω(P1) = · · · = ω(Pg) = 0, we have ω ≡ 0.

Then (dF )∗ is an injection.
Recall that for X,Y compact connected complex manifolds of same dimension, f :

X → Y holomorphic is surjective iff there exists x ∈ X such that df(x) is invertible.
Because in this case, by local inverse theorem there exists (U, x) and (V, f(x)) such

that f |U : U → V is a biholomorphism. This implies that V contains at least one regular
value y and for this value #f−1(y) ≥ 1, hence deg f ≥ 1, hence surjective and for regular
values, deg f = #f−1(y).

Example 3.15. There is a particular case of this when X is of genus 1. Hence dimΩ(X) =

1 and take ω ∈ Ω(X) \ {0}. Fix P ∈ X, consider X → Jac(X) = C/Λ, Q 7→
∫
c ω, where

c(0) = P and c(1) = Q.
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Φ : X → C/Λ, and dΦ = ω. Assume by contradiction Φ is not injective, then by Abel
theorem, there is f ∈ M(X), (f) = (P )− (Q), hence f admits a unique simple pole, then
f : X ∼= P1, a contradiction since g = 1.

In the devoir, ω does not vanish, hence this map Φ such that dΦ = ω does not vanish,
hence Φ is locally injective and hence a cover. A cover of an elliptic curve is an elliptic
curve.

How to prove that Λ is a lattice in C.
|ω|2 is a Riemannian metric locally isomorphic to |dz|2 = dx2 + dy2. There is a map

(X̃, |ω̃|2) Φ−→ (C, |dz|2) which is an isometry, since |ω|2 is geodesically complete on X, |ω̃|2

is geodesically complete on X̃ hence Φ is an isomorphism.
Dual point of viewL there is X ∈ H0(TX) such that ω(X) ≡ 1. The flow of X

is complete: there is f : C × X → X with open orbits, hence there is only one orbit
X = C/ Stab(P ). Stab(P ) is a discrete subgroup such that the quotient is compact, hence
Stab(P ) is a lattice.

Theorem 3.11 (Tischeler theorem). Let M be a compact real manifold and ω ∈ Z1(M)

a closed one-form, which does not vanish on M . Then there is a submersion M → S1.

Proof. H1(M,Z) → (Z1(M))∗, [γ] 7→ [ω →
∫
γ ω], consider the periods of ω.

The image of
∫
ω is the obstruction for ω to admit a primitive, in H1(M,R). By a

slight deformation of ω ∈ H1
DR(M,R) we can assume that ω1 is close to ω, does not vanish

and admits rational periods (because H1(M,Q) dense in H1(M,R)). Multiplying by some
n ∈ Z, nω1 will have integer periods.

M̃ R

M R/Z

∫
ω=f

fibration

,

since df = ω 6= 0.
The action of π1(M) on M̃ gives

f(γ ·m) = ρ([γ]) + f(m),

where γ ∈ π1(M) and ρ([γ]) =
∫
γ ω.

Theorem 3.12 (Suale). Diff+(S2) has the same homotopy type as SO(3,R).

Proof. Any smooth vector field on S2 gives a 1-parameter family of diffeomorphisms.
Idea of proof (earle-Eells): Construct the sapce of complex structures on S2 compatible

with the orientation.

Comp+ = {j ∈ H0(End(TS2)) : j ◦ j = − id, orientation}.

By isothermal coordinates theorem they are all integrable and define complex structure.

55



Diff+(S2) acts naturally on Comp+, ∀ϕ ∈ Diff+(S2) and j ∈ Comp+, define ϕ∗j ∈
Comp+.

Uniformization theorem implies there is only one orbit: ∀j ∈ Comp+, there is ϕ ∈
Diff+(S2) such that j = ϕ∗j0, j0 is the standard complex structure. Moreover,

Stab(j0) = {ϕ ∈ Diff+ : ϕ∗j0 = j0} = Aut(P1(C)) ∼= PSL(2,C).

Thus
Comp+ ∼= Diff+(S2)/PGL(2,C).

Comp+ is the space of sections {s ∈ H0(End(TS2)) : j2 = − id} of a bundle over S2

whose fiber is the hyperbolic plane.
Topology: The space of sections of a bundle of contractible fiber is contractible

Diff+(S2) ∼= PGL(2,C)× Comp+(S2),

hence Diff+(S2) has the same homotopy type as PGL(2,C) and PGL(2,C) is homeo-
morphic to SO(3,R)× R2, hence has the same homotopy type as SO(3,R).
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